
Cooperative XML (CoXML) Query Answering at INEX 03
Shaorong Liu and Wesley W. Chu

UCLA Computer Science Department, Los Angeles, CA 90095
{sliu, wwc}@cs.ucla.edu

ABSTRACT

The Extensible Markup Language (XML) is becoming
the most popular format for information representation
and data exchange. Much research has been investigated
on providing flexible query facilities while aiming at
efficient techniques to extract data from XML documents.
However, most of them are focused on only the exact
matching of query conditions. In this paper, we describe a
cooperative XML query answering system, CoXML,
which cooperates with the users by extending query
relaxation techniques and provides approximate matching
of query conditions. We also present our participation
effort in the Initiative for the Evaluation of XML
Retrieval (INEX) with CoXML.

1. INTRODUCTION
With the growing popularity of the Extensible Markup
Language (XML) [12], more and more information is
stored and exchanged in the XML format [1]. XML is
essentially a textual representation of hierarchical (tree-
like) data where a meaningful piece of data is bounded by
matching starting and ending tags, such as <name> and
</name>.

To cope with the tree-like structures in the XML model,
several XML-specific query languages have recently been
proposed (e.g. Xpath [15], Quilt [3], XML-QL [13] and
XQuery [16] etc.). All these XML query languages aim at
only the exact matching of query conditions. Answers are
found when those XML documents match the given
query conditions exactly. However, this may not always
be the case in the XML model. To remedy this condition,
we are developing a query relaxation framework for
searching answers that match the given query conditions
approximately. Query relaxation enables systems to relax
the user query to a less restricted form to derive
approximate answers. Such a technique has been
successfully used in the relational databases (e.g. CoBase
[5]) and has proven to be a valuable technique for
deriving approximate answers.

In the XML domain, the need for query relaxation
increases since the flexible nature of the XML model
allows varied structure or values, and the non-rigid XML
tag syntax enables users to embed a wealth of meta-
information in XML documents. Query relaxation is more
important for the XML model [14] than for the relational
model because:

1. The schema in the XML model [14] is substantially
larger and more complex than the schema in the
relational model. Therefore, it is often unrealistic for
users to understand the full schema and compose
very complex queries. Thus, it is critical to be able to
relax a user’s query when the original query yields
null or insufficient answers.

2. As the number of data sources available on the web

increases, it is becoming increasingly common to
build systems that gather data from the
heterogeneous data sources. The structures of these
data sources are different although using the same
ontology for similar contents. Therefore, the
capability to query against differently-structured data
sources is becoming increasingly important [8, 9].
Query relaxation allows a query to relax its structure
and matches data sources with relaxed structures.

Query relaxation in the XML model introduces new
challenges than the relational database. Query relaxation
in the relational model is basically focused on the value
aspect. For example, for a relational query “find a person
with a salary range 50K – 55K”, if there is no answer or
not enough answers available, it can be relaxed to a query
“find person with a salary range 45K - 60K.” In the XML
model, in addition to the value relaxation, a new type of
relaxation called structure relaxation is introduced.
Structure relaxation relaxes the nodes and/or edges of a
query tree.

Further, we shall develop a methodology to provide
automatic structure relaxations and to evaluate the
effectiveness of XML structure relaxations.

A knowledge-based relaxation index structure called
XML Type Abstraction Hierarchy (X-TAH) is introduced
to provide scalable XML query relaxations. X-TAH is a
hierarchical tree-like knowledge structure that builds
multi-level knowledge representation about the XML data
tree. X-TAH can be used to guide the XML query
relaxation process.

The paper is organized as follows: Section 2 provides
some background information which cover XML data
model, query model and XML query relaxation types.
Section 3 describes the system architecture that we are
using for this year’s INEX retrieval task. Query execution
and query relaxation processes are presented in Section 4.

The experimental performance is discussed in Section 5.
Finally we summarize our participation effort in INEX 03
and discuss future works in Section 6.

2. XML Data Model and Query Relaxation
We first briefly describe the XML data and query model
and then introduce query relaxation types in the XML
model.

2.1 Data Model and Query Model
An XML document can typically be represented as an
ordered, labeled tree where nodes correspond to elements
and attributes, and edges represent element inclusion
relationships. Each node has a label which is the tag name
of its corresponding element or attribute. Elements’ text
content or attributes’ values become the values of their
corresponding nodes. Similarly, a query against an XML
document can be represented as a tree with two types of
edges: a parent-child edge denoted as “/”, or an ancestor-
descendant edge denoted as “//”.
Note that in the paper, we treat an attribute as a sub-
element of an element and a reference IDREF as a special
type of value.

2.2 Query Relaxation Types
In the XML model, there are two types of query
relaxations, value relaxations and structure relaxations:

2.2.1 Value Relaxation

In the XML context, value relaxation involves expanding
the value scope of certain nodes to allow the matching of
additional answers. A value can be relaxed to a range of
numeric values or a set of non-numeric values. Figure 1
illustrates an example of numeric value relaxation and an
example of non-numeric value relaxation. The query in
Figure 1b is a relaxed query for that in Figure 1a by a
numerical value relaxation, and the query in Figure 1d is
a relaxed query for that in Figure 1c by a non-numeric
value relaxation.

2.2.2 Structure Relaxation

In XML context, structural relaxation is the process of
relaxing the nodes and/or edges of a query tree. After the
relaxation, a new query tree may have a different
structure than the original query tree. There are three
types of structural relaxations.
1) Edge Relaxation
In an edge relaxation, a parent-child edge ('/') in a query
tree can be relaxed to an ancestor-descendant edge ('//').
The semantics of edge relaxation is that while the original
query finds answers with only a parent-child relationship,
the new query will be able to find answers with an
ancestor-descendent relationship which is a superset of a
parent-child relationship. For example, query topic 69
/article/bdy/sec[about(.//st, “Information Retrieval”)] can
be relaxed to /article/bdy//sec[about(.//st, “Informaiton
Retrieval”)] by relaxing the structural relationship
between node bdy and sec from “/” to “//”.
2) Node Re-label
In this relaxation type, certain nodes can be re-labeled to
similar or equivalent tag names according to the domain
knowledge. For example, in INEX 03, domain experts
have identified sets of equivalent tags as shown in Figure
2. With this domain knowledge, the query
/article/bdy//sec [about(., “XML”)] can be relaxed to
/article/bdy//section [about(., “XML”)] by generalizing
node sec’s label to section.

3) Node Deletion
In this relaxation type, certain nodes can be deleted while
preserving the “superset” property. When a node v is a
leaf node, it can simply be removed. When v is an internal
node, the children of node v will be connected to the
parent of v with ancestor-descendant edges (“//”). For
example, a query /article/bdy/sec[about(., “Information
Integration”)] can be relaxed to /article//sec
[about(.,”Information Integration”)] by deleting internal
node bdy so that a section in an article’s appendix talking
about “Information Integration” can also be returned as
an approximate answer.

paragraph

p1 p2 p3 ip1 ip2 ip3 ip4 ip5 ilrj item-nonep

section

sec ss1 ss2 ss3

(a) Equivalent names for paragraph-like tags

(b) Equivalent names for section-like tags

Figure 2: Domain knowledge for equivalent tags in INEX 03
article

year

2001-2003

article

year

1998-2003

article

title

“XML

(a) (b) (c)
(d)

Figure 1: An example of value relaxation

article

title

“Semi-
structured
Data”

3. The CoXML Framework

Figure 3 shows the cooperative XML query answering
system (CoXML) which performs two types of functions:
document indexing and query processing as discussed in
the following:
Document Indexing
While a SAX parser parses XML documents, the Index
Builder builds indices on these data based on the index
configurations provided by the Index Configurations
module (Section 3.1). The Index Builder module builds
several types of indices (refer to section 3.2) for query
processing.
Query Processing
An XML query is first parsed by the Query Parser to
check its correctness. If the query is invalid, it will be
returned to the user with the error information. Otherwise,
the Query Processor will consult the Index Manager to
load the corresponding indices for processing the query.
If there are enough XML answers returned, the Result
Ranking module will rank the results based on their
relevancy to the query and return the ranked results to the
user. If there is no answer or the available answers are not
enough, the X-TAH that resides in the Knowledge Base
will guide the Query Relaxation Manager to relax the
query. Then the relaxed queries will be resubmitted to the
Query Processor for answering. This process will be
repeated until there are enough answers available or the
query is no longer relaxable.

3.1 Index Configurations
XML documents in the INEX document collections are
document-centric. There are two types of tags in these
documents: 1) semantic tags, and 2) presentation tags.
Semantic tags describe the semantics of the elements. For
example, in the XML document fragment example in
Figure 4, <article>, <bdy> and <sec> etc. are semantic
tags for they encode the semantics of the elements, while
<scp> is a presentation tag because it only senses the
purpose of displaying: informing the browser to display
the characters bounded by <scp> and </scp> in lower
cases.

Presentation tags sometimes are undesirable in query
processing. For example, suppose a user wants to find an
article that has a section with title containing a keyword
“knowledge”, which can be expressed in XQuery as
//article [contains(//sec/st, “knowledge”)]. Intuitively, the
XML document fragment in Figure 4 is an answer
because the title of the article’s section (Line 4-7 in
Figure 4) is “Knowledge Based…”. However, if we do
not ignore the markup <scp> and </scp> (Line 4), it will
not be returned as an answer since the presentation tag
<scp> separates “K” from “NOWLEDGE”.
To support keyword and phrase matching in document-
centric XML documents, it is necessary to ignore such
presentation tags [2]. The set of ignorable tags during
indexing is listed in the Index Configurations module
(Figure 3). For XML documents in the INEX document
collections, the list of ignorable tags for index
configurations is shown in Table 1.

Category Ignorable Tags

List-items item-bold, item-both, item-bullet, item-
diamond, item-letpara, item-mdash, item-
numpara, item-roman, item-text

Lists li, l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb, lc, ld, le,
list, numeric-list, numeric-rbrace, bullet-list

Text font,
style, size,

emphasis etc

ss, tt, b, ub, it, rm, scp, u, sub, super, large,
ariel, bi, bu, bui, cen, rom, h, h1, h1a, h2, h2a,
h3, h4

SAX
Parser

XML Data

Index
Builder

Index
Manager

Knowledge Base
(X-TAH)

Query
Parser

Query
Processor

Query
Relaxation

XML Query

Relaxed
Queries

Result
Ranking

Query Results

XML
Indices

Figure 3: The CoXML System Architecture

Index
Configuration

Document Indexing

Query Processing

Human

1. <article>
2. <bdy>….
3. <sec>
4. <st>K<scp>NOWLEDGE</scp> B<scp>ASED</scp>
5. S<scp>EMANTIC</scp> T<scp>EMPORAL</scp>
6. I<scp>MAGE</scp> M<scp>ODEL</scp>
7. </st> …
8. </sec> ….
10. </bdy> ….
11. </article>

Figure 4 : An XML document fragment

Table 1: Index configurations used in INEX

3.2 Indexing XML documents
Each node in an XML data tree is represented by a triple
(ID, size, level), where ID uniquely identifies the node in
the XML document collections, size indicates the size of
the sub-tree rooted at this node and level describes the
node’s height in the data tree. The advantage of this
encoding scheme is that the hierarchical relationship
(either parent-child or ancestor-descendant relationships)
between any pair of nodes can be checked in constant
time.
Values of nodes are processed in the following three steps:
1) A stop words list is used to delete words with weak
discriminative powers (such as articles, pronouns,
conjunctions and auxiliary words). This step significantly
reduces the index size.
2) The Lovins stemmer [7] is used to derive word stems.
For example, the stem for “clustering”, “clusters” and
“clustered” is “cluster”. Word stemming reduces the
index size and also supports keyword matching.
3) Each stem is represented as a pair of (ID, pos), where
ID is the unique identifier of a node that contains this
stem and pos is its relative position in the node’s value.
We assign a node’s ID to its corresponding value to avoid
the expensive join operations between nodes and their
values and keep each stem’s relative position in a node’s
value to support phrase matching.
To support efficient and scalable query processing, the
Index Builder builds several types of indices, as listed
below:
 Tag Name Index (tag name name identifier)

Each tag name s is mapped to a unique name
identifier (NID) to minimize index size and
computation overhead by eliminating string
comparisons.

 Node Index (name identifier (ID, size, level))
Each name identifier is mapped to a set of nodes (in
the form of (ID, size, level)) whose labels are the
same as the one represented by the name identifier.

 Inverted Stem Index (stem s (ID, pos))
Each stem s is mapped to a set of pairs (ID, pos),
where ID is the unique identifier of the node that
contains stem s and pos is its relative position in the
node’s value.

 Text Size Index (ID text size)
For each node that has a value, its ID is mapped to
the number of words it contains. The text size index
is useful for result ranking (refer to section 4.4).

The indices for the XML document fragment in Figure 5
are shown in Table 2, which consist of four indices: a tag

name index (Table 2.a); a node index (Table 2.b); an
inverted stem index (Table 2.c) and a text size index
(Table 2.d).

Stem (ID, pos) pairs

bas (3, 1) (7, 2)

imag (3,2) (4, 3)

knowledg (3, 0) (7, 1)

retrief (3, 3) (4, 1)

3.3 Knowledge Base
Knowledge Base is an important part in the system
architecture, which facilitates XML query relaxation and
consists of the following two parts:

1) Domain Ontology

Domain ontology provides the semantic relationships
among the tag names in an XML dataset, such as groups
of equivalent or similar tag names which can guide the
node re-label. For example, Figure 2 lists two sets of
equivalent or similar tag names for INEX 03, one for
section-like nodes (Figure 2a) and another for paragraph-
like nodes (Figure 2b).

2) Knowledge-based XML Relaxation Index (X-TAH)

Tag Name NID

article 0

appendix 1

body 2

section 3

NID Nodes (ID, size, level)

0 (1, 5, 1)

1 (5, 1, 2)

2 (2, 2, 2)

3 (3, 0, 3) (4, 0, 3) (7, 0, 3)

ID Text Size

1 1000

2 600

… …

7 100

article

body

section section

appendix

section

“Knowledge Based
Image Retrieval…”

“It retrieves
the images…”

“A knowledge
base is …”

Figure 5 : An XML document fragment

2

3 4

5

7

1

Table 2: Indices for the XML fragment in Figure 5, a) maps a
tag name to a unique name identifier; b) maps a name identifier
to a set of nodes in the format of (ID, size, level); c) maps a
stem to a set of (ID, pos) pairs d) maps a node ID to its text size

(c) An inverted stem index

(b) A node index (a) A tag name index

(d) A text size index

Query relaxation enlarges the search scope of query
conditions which can be accomplished by viewing a
query object at a higher conceptual level. To support
query relaxation in the XML model, we are generating
two types of relaxation index structures, XML Type
Abstract Hierarchy - X-TAH: value relaxation index and
structure relaxation index for guiding value and structure
relaxations.

An X-TAH is a tree-like multi-level knowledge
representation of the structure and value characteristics of
an XML data tree. X-TAH can be automatically
generated from a set of objects based on their inter-object
distance [8]. Objects in an XML value relaxation index
are values of XML elements and attributes, while objects
in an XML structure relaxation index are structure
fragments of XML data trees. X-TAH has two types of
nodes: internal nodes and leaf nodes. This differentiates it
from a traditional cluster which has no internal nodes. An
internal node in an X-TAH is a representative that
summarizes the characteristics of all the objects in that
cluster, while a leaf node is an object that is either a value
(in the XML value relaxation index) or a structure
fragment of an XML data tree (in the XML structure
relaxation index). For example, Figure 6 is an X-TAH for
the values of //fig//no in the INEX document collections.
Figure 7 is an X-TAH for structure relaxation for
//article/*//section.

4. Query Processing and Relaxation
The control flow for processing the INEX query topics is
illustrated in Figure 8. First, each topic is translated into a
tree representation that the Query Processor can follow
and process. Next, the query is executed to produce a set
of results. If there are enough answers produced, the
Result Ranking ranks each result based on its relevancy to
the query. Otherwise, the Query Relaxation Manager
relaxes the query based on an X-TAH (Knowledge Base).
The relaxed queries are then submitted to the Query
Processor for deriving approximate answers. This process

will iterate until either there are enough answers or the
query is no longer relaxable.

4.1 Transformation of INEX Query Topics
The topic transformation can be accomplished by the
following three steps:
1) Translating each INEX query topic expressed in XPath
[15] into a tree representation. This is a straightforward
step as most XPath expressions use tree structures.
2) Categorizing each term and phrase in the <title></title>
part of a query into one of the three categories as defined
below:

• PREFER (P)
Any term or phrase prefixed by “+” belongs to this
category.
• REJECT (R)

 Figure 6: An Example of value relaxation index (X-TAH)

O2 O3 O4

R1

O5 O6 O7

R2

O8 O9

R3

R4

R5
Structure Relaxation
Index for query pattern
//article/*//section

O1

O10

Figure 7: An Example of structure relaxation index (X-TAH)

Query Topic

Query Processor

Query Relaxation
Manager

Enough
Answers?

Relaxed
Query

Result
Ranking

Query Results

Y

N

 Figure 8: The control flow of CoXML query processing

KB
(X-TAH)

15

7

4 3

3-4 2 1

1-2

6 5

5-6

3-6

1-6

9 8

8-9

7-9

11 10

10-11

7-11

1-11

1-15 Value relaxation index for
//fig//no values in the INEX
document collections

O1: //article/bdy/sec O2: //article/bdy/sec/ss1
O3: //article/bdy/sec/ss1/ss2 O4: //article/bdy/sec/ss1/ss2/ss3
O5: //article/bm/sec O6: //article/bm/sec/ss1
O7: //article/bm/sec/ss1/ss2 O8: //article/bm/app/sec
O9: //article/bm/app/sec/ss1 O10 : //article/bm/app/sec/ss1/ss2
R1 : //article/bdy//section R2 & R4: //article/bm//section
R3 : //article/bm/app//section R5 : //article//section

Any term or phrase prefixed with “-“ or appearing
after “!=” operator belongs to this category.
• NORMAL (N)
Any term or phrase not in the PREFER or REJECT
category is classified in the NORMAL category.

3) Expanding a query’s value predicates in the
<title></title> part with terms and phrases in the
<keyword></keyword> part that do not appear in the
<title></title> part. Such terms and phrases are in the
KEYWORD (K) category.
For example, the tree representation for the INEX 03
query topic 89 (Figure 9) with classified terms and
phrases and expanded keyword value predicates is shown
in Figure 10.

4.2 Query Processing
After the topic translation, a query tree is sent to the
Query Processor for execution. Several query processing
strategies have been proposed for XML tree pattern
queries [e.g.11, 10]. The basic idea of these query
processing strategies is to decompose an XML tree
pattern query into a set of basic structural relationships
(i.e. parent-child relationship and ancestor-descendant
relationship) between pairs of nodes. Query answers can
be derived by first matching each of these basic structural
relationships and then combing these basic matches.
Matching each structural relationship is usually based on
XML indices and structural join algorithms [10, 4 etc.].

We leverage on these query processing strategies for
deriving the exact matched query answers with additional
care for processing value constraints in a query tree.
As illustrated in section 4.1, each term and phrase in the
<title></title> and <keyword></keyword> part of a query
topic is classified into one of the four categories. The
semantics for terms and phrases in the PREFER,
NORMAL and KEYWORD categories are quite clear.
However, the semantics for terms and phrases in the
REJECT category is context sensitive. If a value predicate
in a query contains only REJECT category terms and
phrases, it is interpreted as “strictly MUST NOT”.
Otherwise it means “fuzzy MUST NOT”. For example,
for the query tree in Figure 10, the semantics for “R:
SOFT, SOM” under node bdy is different from that for “R:
Kohonen” under node snm. The semantics for the first
one is that if an article’s body (bdy) contains either term
“SOFT” or “SOM”, it is still an answer but with lower
relevancy. However, the semantics for the second one is
that if an author’s surname (snm) contains the term
“Kohonen”, it will not be returned as an answer.

4.3 Query Relaxation
If there is no answer or not enough available answers, the
Query Processor will call the Query Relaxation Manager
to relax the query in the following three steps:
1) A set of relaxable conditions as well as their respective
relaxation order are generated. For example, for INEX 03
query topic 85, //article[.fm//yr >= 1998 and .//fig//no
>9]//sec[about(.//p, ‘VR, “virtual reality”, “virtual
environment”, cyberspace “augmented reality”’)], the set
of relaxable conditions and their relaxation order may be
assigned as: relaxing the value of figure numbers
(//article//figure/no > 9) first and then relaxing the value
of the article’s year (//article/fm/yr >= 1998).

2) For each relaxable condition, a relaxation index (X-
TAH) will be selected to guide the relaxation process.
The Query Relaxation Manager will first examine the
internal representatives to find the one that contains the
exact or closest match against the relaxable condition and
relax the query condition accordingly. There are two
types of operations in an X-TAH: i) Generalization -
moving up the hierarchy to enlarge the search scope; and
ii) Specification – moving down the hierarchy to narrow
the search scope. The query relaxation process may incur
a sequence of Generalization and Specification operations.
3) The relaxed queries will be sent to the Query
Processor to derive approximate answers. This relaxation
process will continue until there are enough answers or
the query is no longer relaxable.

<inex_topic topic_id="89" query_type="CAS" ct_no="123">
<title>
//article[about(./bdy,'clustering "vector quantization" +fuzzy +k-
means +c-means -SOFM -SOM')]//bm//bb[about(.,'"vector
quantization" +fuzzy clustering +k-means +c-means') AND
about(./pdt,'1999') AND ./au/snm != 'kohonen']
 </title>
<description>
Find articles about vector quantization or clustering and return
bibliography details of cited publications about clustering and
vector quantization methods, from recent years, not authored by
Kohonen.
</description>
<narrative>
Bibliography elements of publications, preferably from around
2000 (1996 to 2002 is fine, descending relevance thereafter).
Preferred documents have reference to k-means or c-means
clustering. Not interested in publications where the author is
Kohonen, or in his work on self organizing feature maps (SOM
SOFM). The citing article and the cited publication should be about
clustering or vector quantization methods.
</narrative>
<keywords>
cluster analysis,adaptive clustering,Generalized Lloyd, LBG, GLA
</keywords>
</inex_topic>

Figure 9: INEX 03 Query Topic 89

For example, in the query topic 85, to relax the query
condition, //article//figure//no > 9, the Query Relaxation
Manager will select the value relaxation index in Figure 6
to guide the relaxation process. The system first locates
the closest matched internal representative, which is 8-9,
and then relaxes the query condition to //article/figure//no
> 8 to derive approximate answers.

Similarly, to relax the structure constraint //article/bdy/sec
in the query topic 69 (i.e. /article/bdy/sec[about(.//st,
‘“information retrieval”’)]), the Query Relaxation
Manager will first locate the closest matched internal
representative, which is //article/bdy//sec, and will relax
the query topic to //article/bdy//sec[about (.//st,
‘“information retrieval”’)].

4.4 Result Ranking
The query results are ranked by the Result Ranking
module before returning them to the user. Query results
are ranked according to the following priorities: first
query results from the original query and then
approximate answers from the relaxed queries. The
approximate answers are further ranked according to the
relaxation order. For example, for the query topic 85,
there are two relaxation conditions: 1) //article//fig//no >
9 and 2) //article/fm//yr > 1998. The relaxation order
between them is to relax the first condition and then the
second one. As a result, the approximate answers for the
first relaxation condition are ranked before the
approximate answers for the second relaxation condition.
For the query results in the same category, they are
ranked according to the following formula:

| |

i = P, N, K, R 1

()
| |

iC
iji

u
ji

frequency of termwrank
C Text Size of node u=

= ∑ ∑

where wi is the weight assigned to one of the four
categories Ci (i = P, N, K R); |Ci| is the total number of
stems (a phrase is counted as a term) in the category;
frequency of termij is the number of occurrence of termj
from category Ci in node u; and Text Size of node u refers
to the total number of words in node u, which can be
accessed from the text size index.

5. Experimental Observations
We shall now discuss the experimental results based on
two performance measurements: index size and query
execution times.
The indices for all the INEX document collections occupy
about 1.2GB, which is roughly about twice the size of the
XML document collections. Four types of indices are
built by the Index Builder: tag name index, node index,
text size index, and inverted stem index. The first three
are relatively small and the last one is quite large.
Query processing time depends on the following factors:
1) Number of stems and phrases in a query and their
corresponding frequency in the XML data.
The query processing time depends on the number of
stems and phrases a query contains and their
corresponding frequencies in XML documents. More
frequent stems and phrases require longer query
processing time than less frequent ones.
2) Number of structure constraints in a query and their
corresponding frequency in the XML data.
The required query processing time is sensitive to the
number of structure constraints a query contains. It is also
sensitive to their frequencies in XML documents. For
example, a less frequent structure constraint, Q1
//article/fm//pdt, can be processed much faster than a
more frequent one Q2 //article/bdy//p. (Q1 returns the
publication date (pdt) element of an article in its front

article

bdy

N: clustering, “Vector quantization”
P: fuzzy, k-means, c-means,
R: SOFT, SOM
K: “cluster analysis”, “adaptive
clustering”, “Generalized Lloyd”,
LBG, GLA

bm

bb

pdt au

snm

R: Kohonen
N: 1999

N: clustering, “Vector quantization”
P: fuzzy, k-means, c-means,
K: “cluster analysis”, “adaptive
clustering”, “Generalized Lloyd”,
LBG, GLA

Figure10: The tree representation of query topic 89 in INEX 03

matter part (fm) and Q2 returns the paragraph (p) elements
of an article in its body part (bdy)).
3) The level of query relaxation and the number of
relaxable conditions existed in the query.
The more relaxable query conditions a query topic
contains, the longer it takes to derive the approximate
answers.
Depending on the complexity of its value and structure
constraints, a content-and-structure (CAS) query takes
from several seconds to over a minute to get exact
matched answers. For a relaxable query, it might take
several minutes to generated the relaxed queries and
derive approximate answers.

6. Summary and Future Works
In this paper, we describe how we index INEX XML
documents and extend the query relaxation technique to
the XML model to support cooperative XML query
answering.
During our INEX 03 investigation, several problems were
discovered, which needs future investigations:
1) Index Configurations
Our current index configuration only contains a list of
ignorable tags. We plan to support other index
configurations, such as ignorable annotations in which
both elements and their value can be ignored.
2) Uniform Value Index Scheme
In our current system, we index the elements’ text content
and attributes’ values in XML documents uniformly.
Each non-stop word is stemmed and is built an inverted
stem index without considering of the value’s
characteristics. Such an index approach sometimes may
derive undesirable results. For example, for a content-
only (CO) query ”web, internet”, the document fragment
“<author> <snm>webb </snm></author>” will be
returned as an answer since “webb” and “web” share the
same stem: “web”. To avoid such undesirable results, we
plan to work on a configurable value index framework
which supports multiple value treatment options and
index types based on the value’s characteristics.
3) Ranking Functions
Our current system only supports relative ranking.
Ranking functions for query results needed to be
investigated to provide more user and context sensitive
ranking.
4) Query Relaxation Language

No explicit relaxation constructs is available in a query
topic for specifying the relaxable query conditions as well
as their relaxation order. We plan to develop a

cooperative query language that enables users to specify
relaxation constructs in the queries.

ACKNOWLEDGEMENT
This work is supported by NSF Award IIS#: 0219442.

REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

web: from relations to semistructured data and XML.
Morgan Kaufmann Publishers, Los Altos, CA 94022,
USA, 1999.

[2] S. Amer-Yahia, M. Fernandez, D. Srivastava, Y. Xu.
Phrase Matching in XML, VLDB 2003

[3] D. Chamberlin, J. Robie, and D. Florescu. Quit: An
XML query language for heterogeneous data sources.
In WebDB, May 2000

[4] S. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, C.
Zaniolo. Efficient Structural Joins on Indexed XML
Documents, VLDB 02

[5] W. W. Chu, H. Yang, K. Chiang, M. Minock, G.
Chow, and C. Larson. CoBase: A Scalable and
Extensible Cooperative Information System. J.
Intelligent Information Systems (JIIS), 6(2/3):223-
259, May 1996.

[6] S. Liu and W. W. Chu. A Knowledge-Based
Approach for Cooperative XML Query Answering,
UCLA CS Dept. Technical Report, 2003

[7] J.B. Lovins. Development of a Stemming Algorithm.
In Mechanical Translation and Computational
Liguistics, 11(1-2), 11-31, 1968

[8] Y. Kanza, W. Nutt, and Y.Sagiv. Queries with
Incomplete Answers over Semi-structured Data. In
ACM PODS, 1999

[9] Y. Kanza and Y.Sagiv, Flexible Queries over Semi-
structured Data, In ACM PODS, 2001

[10] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N.
Koudas, J. M. Patel, and Y. Wu. Structural joins: A
primitive for efficient XML query pattern matching.
In ICDE 2002

[11] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G.
Lohman. On Supporting Containment Queries in
Relational Database Systems, SIGMOD 2001

[12] XML http://www.w3.org/XML/
[13] XML-QL
 http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/
[14] XML Schema http://www.w3.org/xml/Schema
[15] XPATH http://www.w3.org/TR/xpath
[16] XQuery http://www.w3.org/TR/xquery

