
 1

University of California 
Los Angeles 

 
 
 
 
 
 

Parser for Relaxation-Enabled XMLQuery Language 
(RLXQuery) 

 
 

 
 
 
 
 
 
 
 
 
 
 

Advisor:  Wesley W. Chu 
 

Student:  Eric Sung 
 
 
 
 
 
 

Fall, 2003 
 

 



 2

 
 

ABSTRACT....................................................................................................................... 3 

1. INTRODUCTION..................................................................................................... 3 

2. XQUERY ................................................................................................................... 4 
2.1  HISTORY.................................................................................................................... 4 
2.2  GRAMMAR................................................................................................................. 5 
2.3  QUERY RELAXATION................................................................................................. 5 

3.  IMPLEMENTATION AND EXPERIENCE ............................................................ 5 
3.1  RLXQUERY: RELAXATION-ENABLED XML QUERY LANGUAGE .............................. 5 

3.1.1 Grammar..................................................................................................... 6 
3.2  JAVA COMPILER COMPILER....................................................................................... 6 

3.2.1 JavaCC RLXQuery grammar...................................................................... 6 
3.2.2 Token........................................................................................................... 6 
3.2.3 Production................................................................................................... 7 
3.2.4 JJTree.......................................................................................................... 7 
3.2.5 Top-down vs. bottom-up.............................................................................. 8 
3.2.6 Left-recursive .............................................................................................. 8 
3.2.7 Top-down non-unique identifier ................................................................. 8 

3.3  XQR_RLX CLASS................................................................................................... 10 

5.  FUTURE WORKS..................................................................................................... 12 

6.  ACKNOWLEDGEMENT......................................................................................... 12 

7.  CHALLENGES.......................................................................................................... 12 

8.  SUMMARY ................................................................................................................ 12 

REFERENCE.................................................................................................................. 12 

APPENDIX I:  RLXQUERY TERMINALS................................................................ 14 

APPENDIX II:  RLXQUERY NON-TERMINALS .................................................... 15 

APPENDIX III:  PARSER TREE EXAMPLE #1....................................................... 19 

APPENDIX IV:  PARSER TREE EXAMPLE #2 ....................................................... 22 

 



 3

Abstract 
Query relaxation for XML (eXtensible Markup Language) [4] data is more desired 
because the data structure in XML model is substantial bigger than in relational model.  
The XML query relaxation proposed by Dongwon Lee [6] tries to do query 
approximating using XML Type Abstraction Hierarchy (X-TAH).  In order implement 
Lee’s proposal, we create the design of RLXQuery Engine [7]. 
 
The focus of this paper is RLXQuery parser.  The RLXQuery parser is one of three 
important components to be built in RLXQuery Engine.  The job of RLXQuery parser is 
to parse the user’s RLXQuery query string and returns a XQR_RLX class object, which 
contains relaxation information of the query.  If the XQuery part of the RLXQuery return 
empty result, RLXQuery engine will relax the expressions stored in XQR_RLX class 
based on the relaxation information and generate an expression-relaxed XQuery. 
 
1. Introduction 
Query relaxation technique has been used in relational databases [5][7][8][9], and has 
proven to be a valuable technique for deriving approximate answers.  In our previous 
work on query relaxation in CoBase [5] project, we extended SQL to CoSQL6y 8.  
CoSQL provides relaxation operation and control for relational data model.  
 
Increasingly, XML is considered the information exchange format of choice on the 
Internet, and it is natural that queries among applications should be expressed as queries 
against data in XML format.  This use gives rise to a requirement for a query language 
designed expressly for XML data sources.  In October 1999, W3C formed a group for the 
purpose of designing such a query language called XQuery [1]. 
 
Query relaxation is more important for the XML model than the relational model because 
unlike in the relational model where users are given a relatively small-sized schema to 
ask queries, the schema in the XML model is substantially bigger and more complex.  
Therefore, it is often unrealistic for users to understand the full schema and compose very 
complex queries at once, and it becomes critical to be able to relax the user’s query when 
the original query yields null or not sufficient answers. 
 
In addition, as the number of data sources available on the web increases, it becomes 
common to build systems where data are gathered from the heterogeneous data source, 
where the structures of the participating data source are different although they are using 
the same ontologies about the same contents.  Therefore, the capability to query against 
differently structured data sources becomes more important. 
 
Dongwon Lee suggested the approach of XML query relaxation by introducing X-TAH 
and RLXQuery.  However, there is no system implementation for Lee’s research.  Thus, 
RLXQuery Engine is developed to put Lee’s research into real system.  Relaxation-
Enabled XMLQuery Language (RLXQuery) is the query language used by the engine.  
RLXQuery is a subset of XQuery to exclude parts of un-used XQuery grammar and an 
extension of XQuery to add XML query relaxation constructs.  There are three major 
components to be built in RLXQuery Engine: parser, X-TAH manager, and relaxation 



 4

kernel.  This paper is to focus on the design and development of RLXQuery parser.  
RLXQuery parser can be further divided into three subprojects: ENBF, parser, and 
XQR_RLX class. [Figure 1] 
 

 
 

 
 

 
 
 
 
 
 
 
 
 

Figure 1: RLXQuery Engine Dataflow Diagram and RXLQuery Parser 
 

 
2. XQuery 
As increasing amounts of information are stored, exchanged, and presented using XML, 
the ability to intelligently query XML data sources becomes increasingly important. One 
of the great strengths of XML is its flexibility in representing many different kinds of 
information from diverse sources. To exploit this flexibility, XQuery is created with the 
motivation of providing features for retrieving and interpreting information from these 
diverse sources. 
 
2.1  History 
XQuery is designed to meet the requirements identified by the W3C XML Query 
Working Group [1].  The Query Working Group has identified a requirement for both a 
human-readable query syntax and an XML-based query syntax.  XQuery is derived from 
an XML query language called Quilt [15], which in turn borrowed features from several 
other languages, including XPath 1.0 [10], XQL [11], SQL [12].  The first version of 
XQuery is born in June 2001.  After 3 iteration within 2 years, the latest version is 
released on August 2003 on which our project is based. 

JJTree 
Class

XQR_RLX 
Class 

Parser 

Converter
EBNF 



 5

 
2.2  Grammar 
Backus-Naur Form (BNF) is a formal mathematical way to describe a language.  It is 
used to formally define the grammar of a language, so that there is no disagreement or 
ambiguity as to what is allowed and what is not.  In fact, BNF is so unambiguous that 
there is a lot of math theory around these kinds of grammars, and one can actually 
mechanically construct a parser for a language given a BNF grammar for it.  
 
In a BNF grammar, each non-terminal is described as choice of zero or more sequences 
of zero or more terminals and non-terminals.  Extended Backus-Naur Form 
EBNF extends BNF with looping, optional parts, and allows choices anywhere, not just at 
the top level.  XQuery grammar is described in EBNF. 
 
2.3  Query Relaxation 
Query relaxation is the process of understanding the semantic context and intent of a user 
query and massaging the query constraints into "near" values that provide "best-fit" 
answers.  Relaxation is a knowledge-based approach to query answering that can provide 
counter-intuitive and over zealous responses when applied in an uncontrolled manner.  
A relaxation mediator provides operations such as approximately-to, similar-to, or near-
to on specific data schemas and/or types. In addition, a relaxation mediator searches for 
approximate answers automatically whenever a user query returns empty result.  Using 
external knowledge sources, the mediator answers a query by applying controlled 
rewriting and relaxation of query terms such that the input query is answered to a high 
level of accuracy and interpretation.  
 
Our specific relaxation mediators use a knowledge structure termed Type Abstraction 
Hierarchy (TAH) to assist in approximately answering queries. Furthermore, we allow 
the input query to be annotated with control parameters to help guide the mediator in the 
application of query relaxation. 
 
3.  Implementation and Experience 
The parser for XQuery relaxation is implemented using Java and JavaCC.  The parser is 
supposed to parse an XQuery relaxation query and populate the XQR_RXL class object 
representing the RLXQuery.  The XQR_RXL class will be then used by relaxation 
mediator for relaxing the query constrains and producing post-relaxed XQuery. 
 
3.1  RLXQuery: Relaxation-Enabled XML Query Language 
CoSQL is our previous work to extend SQL language for relational data model.  With the 
requirement of developing a set of relaxation operation and controls to support query 
relaxation for the XML model, RLXQuery, a query language that supports the query 
relaxation based on XQuery, is developed.  The major features of the RLXQuery are the 
following: 
 

• Based on standard XQuery query statements, and downward compatible with the 
corresponding portion of XQuery FLWR statements. 

 



 6

• Allows the use of a standard XQuery query when there are no sufficient answers 
for the original query, the system relaxes the query conditions, based on the pre-
specified default strategy. 

 
• Allows the user to specify relaxation constructs (e.g. approximate values or 

conceptual terms, and preference list for certain query condition) in a query 
 

• Allows the user to specify relaxation control constructs such as an unacceptable 
list for certain query condition, relaxation order for multiple relaxable conditions, 
minimum answer set size etc. and allows the user to rank the XML answer sets 
based on the similarity metric specified in the query 

 
3.1.1 Grammar 
RLXQuery grammar is described in EBNF.  RLXQuery language is a subset of XQuery 
language with a query relaxation extension.  The full RLXQuery EBNF is in Appendix I.  
In this session, we will discuss the RLXQuery EBNF extended from XQuery grammar in 
our project.  Any query can’t be described by RLXQuery grammar is considered as an 
invalid query. 
 
3.2  Java Compiler Compiler 
Java Compiler Compiler(JavaCC) [13] is the parser generator for use with Java 
applications.  JavaCC is used by the W3C's XML Query working group to build and test 
versions of the XQuery grammar [2].  JavaCC reads a grammar specification and 
converts it to a Java program that can recognize matches to the grammar.  In addition to 
the parser generator itself, JavaCC provides other standard capabilities related to parser 
generation such as tree building (via a class called JJTree included with JavaCC), actions, 
debugging, etc.  
 
There are many grammars of various languages like Java, C, and C++ created for JavaCC 
etc.  You can download those grammars from the JavaCC grammar repository on our 
cobase project web site [14]. 
 
3.2.1 JavaCC RLXQuery grammar 
The way JavaCC implement XQuery relaxation grammar is also a XML file.  The 
description of the grammar in this file is written in a notation that's very similar to EBNF, 
so that it's generally fairly easy to translate from one to the other. (The notation has a 
syntax of its own, making it expressable in JavaCC.) 
 
The main difference between a JavaCC xml file grammar and standard EBNF is that, 
with the JavaCC version, there are 2 main parts of specifying a grammar: token and 
product.  
 
3.2.2 Token 
Tokens define the terminals of the grammar. 
For example, terminal in RLXQuery 
 



 7

NonRelaxable ::= “!” 
 
is equivalent to the following code: 
 

<g:token name="NonRelaxable"> 
<g:string>!</g:string>  

</g:token> 
 
3.2.3 Production 
Products define the non-terminals of the grammar. 
For example, non-terminal in RLXQuery 
 

PredicatePathExpr ::= ((“!”)? (“/” | “//”))? 
PredicateRelativePathExpr 

 
is equivalent to the following code: 
 

<g:production name="PredicatePathExpr" if="xquery core"> 
<g:optional> 

<g:choice> 
 <g:optional> 
   <g:ref name="NonRelaxableEdge" /> 
   </g:optional> 
  <g:ref name="Slash" />  
  <g:ref name="SlashSlash" />  

</g:choice> 
</g:optional> 
<g:ref name="PredicateRelativePathExpr" />  

</g:production> 
 
3.2.4 JJTree 
JJTree is a JavaCC's companion tool.  JJTree is set up to emit a parser whose main job at 
runtime is not to execute embedded Java actions, but to build an independent parse-tree 
representation of the expression that's being parsed.  This lets you capture the state of the 
parse session in a single tree that's easy to walk and interrogate at runtime, independent 
of the parsing code that produced it.  Working with a parse tree representation also makes 
debugging easy and speeds development time.  
 
JJTree is a preprocessor, and generating a parser for a particular BNF.  Every node in 
JJTree is either a terminal or a  non-terminal.  The class name for the node is 
SimpleNode.  The SimpleNode class provides methods for accessing, setting, and 
navigating.  For example, dump() method output a straightforward, textual representation 
of the tree for debugging purpose.  JjtGetChild(int) let you navigate downward through 
the parse tree.  Appendix III and Appendix IV shows the JJTree dumps of two 
RLXQuery queries which are used to verify the correctness of the parser. 
 



 8

JJTree is just an internal representation of JavaCC’s parse-tree.  However, our RLXQuery 
engine needs a more complex class XQR_RLX for relaxation process.  So, a pre-process 
is required to convert the tree from JJTree to XQR_RLX. 
 
3.2.5 Top-down vs. bottom-up 
The big difference between Yacc, Bison, and JavaCC is that Yacc and Bison work 
bottom-up, whereas JavaCC works top-down. This means that JavaCC has to make its 
choices prior to consuming any of the tokens associated with the choice. However, 
JavaCC's lookahead capabilities allow it to peek well ahead in the token stream without 
consuming any tokens; the lookahead capabilities ameliorate most of the disadvantages 
of the top-down approach.  Yacc and Bison require BNF grammars, whereas JavaCC 
accepts EBNF grammars.   
 
Top-down parsing techniques are attractive because of their simplicity, and can often 
achieve good performance in practice.  However, with a top-down parser like JavaCC  for 
XQuery relaxation, left-recursive and top-down unique identifier are 2 most commonly 
problems occurs.   
 
3.2.6 Left-recursive 
Left-recursion is when a non-terminal contains a recursive reference to itself that is not 
preceded by something that will consume tokens.  The parser class produced by JavaCC 
work with recursive descent.  Left-recursion is banned to prevent the generated 
subroutines from calling themselves recursively ad-infinitum.  
 
Consider the following obviously left recursive production 
 

<g:production name="SimpleTerm"> 
<g:ref name="SimpleFactor" />  
<g:ref name="Multiply" /> 
<g:ref name="SimpleFactor" /> 

   </g:production> 
 

<g:production name="SimpleFactor"> 
<g:ref name="SimpleTerm" />  

   </g:production> 
 
Now if the condition is ever true, we have an infinite recursion.  Luckly JavaCC will 
produce an error message, if you have left-recursive productions.  
The left-recursive production above can be transformed, using looping, to  
or, using right-recursion, to a new production. General methods for left-recursion 
removal can be found in any text book on compiling.  
 
3.2.7 Top-down non-unique identifier 
Some of JavaCC's most common error messages go something like this  
 
Warning: Choice conflict ... Consider using a lookahead of 2 for ...  
 



 9

Read the message carefully. Understand why there is a choice conflict (choice conflicts 
will be explained shortly) and take appropriate action.  In EBNF production like the 
following: 

 
<g:production name="SimpleTerm" if="xquery core"> 

<g:ref name="SimpleFactor" />  
<g:ref name="Multiply" /> 
<g:choice>   

<g:ref name="IntegerLiteral" />  
<g:ref name="NumberLiteral" />    

</g:choice> 
</g:production> 

 
When the parser applies this production, it must choose between expanding it to 
IntegerLiter or NumberLiteral.  But if the next token is an integer then either choice is 
appropriate.  So you have a "choice conflict".  For alternation, the default choice is the 
first choice; that is, if you ignore the warning, the first choice will be preferred, and in 
this example, the second statement is unreachable.  Another way to resolve conflicts is to 
rewrite the grammar. The above 2 non-terminals, IntegerLiteral and NumberLiteral can 
be rewritten to have a unique string token to resolve the ambiguity.  For example, if we 
change to: 
 

<g:production name="SimpleTerm" if="xquery core"> 
<g:ref name="SimpleFactor" />  
<g:ref name="Multiply" /> 
<g:choice> 
  <g:sequence> 
 <g:ref name="PoundSign" /> 

<g:ref name="IntegerLiteral" />  
</g:sequence> 
<g:sequence> 
 <g:ref name="SemiColon" /> 

<g:ref name="NumberLiteral" />  
    </g:sequence>   

</g:choice> 
</g:production> 

 
then the string “#1234” will be parsed as IntegerLiteral, while “;1234” will be parsed as 
NumberLiteral. 



 10

 
3.3  XQR_RLX class 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

XQR_Query 

as_string( ) 

XQR_FFQuery 

type() 

XQR_FuncQuery 

FuncDecl: Hashtable 
QuerySpec: XQR_FFQuery 

XQR_BasicQuery 

ForLetClauseList: 
Vector<ForLetClause> 
WhereCond: XQR_WhereCond 
ReturnExpr: String 
OrderSpec: String 
RlxOrder: XQR_RlxSpec 
AtLeast: int 
Ranking: XQR_Ranking 

XQR_CompdQuery 

LHSQuery: XQR_FFQuery 
RHSQuery: XQR_FFQuery 
SetOp: XQR_SetOp 

XQR_Var 

sVarName: String 
type(): XQR_VarType 
BExpr: XQR_Bexpr 

XQR_WhereCond 

parent: XQR_WhereCond; 
useTah: XQR_UseTah; 
useXTah: XQR_useXTah; 

XQR_SingleCond 

condOp: XQR_CondOp 
CondLHS: XQR_CondOpd; 
CondRHS: XQR_CondOpd; 

XQR_CompdCond 

logicOp: XQR_LogicOp; 
leftChild: XQR_WhereCond 
rightChild: XQR_WhereCond 

XQR_SelectCond 

vRlxFlag: XQR_vRlxFlag; 
sRlxFlag: XQR_sRlxFlag; 
Unacceptlist: XQR_ListValue; 

XQR_JoinCond 

lsRlxFlag: XQR_vRlxFlag 
rsRlxFlag: XQR_vRlxFlag 



 11

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Figure 2: XQR_RLX class digram 
 

 
XQR_RLX class is the object representation of post-processed JJTree.  XQR_RLX is 
designed with the idea of simplifying the methods of retrieving and re-generating the 
query relaxation information.  Thus, RLXQuery Engine can easily locate the relaxation 
operation and control of the query.  RLXQuery Engine can farther replace the relaxation 
operation and control with relaxed XQuery expression within the class.  Figure 2 is the 
class diagram of XQR_RLX.  The job of the converter is to take a JJTree class object as 
input and return a XQR_RLX class object as output. 

XQR BExpr 

sDocName: String 
type( ): XQR_BExprType  

XQR FLWORBExpr

as_string( ):  String 

XQR_PathBExpr 

PathBexpr: XQR_RlxPathExpr
preferTags: Vector<String> 
rejectTags: Vector<String> 

XQR_CondOpd 

get_type( ) 

XQR_NonListVa

 

XQR_ListVal

 

XQR_ComplEx

ExprString: 
String

XQR_RlxPathEx

 

XQR_PathExpr

 

XQR_ExtRHS

: 

XQR_NumericRan

lowerBound: 
double 

d

XQR_SingleValu

valueFlag: int 
value: String 

XQR_RlxSpec 

get_type( ) 
clone( ) 

XQR_RlxElem 

sName: String 

XQR_CompdRlx 

RlxVec: Vector<XQR_RlxSpec>
CompdRlxType: int 



 12

 
 
5.  Future works 
Two other components: X-TAH manager and relaxation kernel are still in the process of 
implementation by other members in the group. 
 
6.  Acknowledgement 
The research and development effort is a team effort.  I would like to acknowledge 
Professor Wesley W. Chu, Sharong Liu, and Dongwon Lee for their contributions in 
design and implementation. 
 
7.  Challenges 
The first challenge is to design RXLQuery grammar which works under original XQuery 
grammar without conflicts.  RLXQuery grammar needs to support both relaxation 
constructs and XQuery grammar.  The direct translation from grammar to EBNF doesn’t 
work most of the time.  The most common issues in translating grammar to EBNF are 
recursion/loops, false-positive, and non-unique identifier.  Recursion/loops cause the 
parser never reaching a terminate state.  False-positive make the parser accept query with 
invalid grammar.  Non-unique identifier allows non-reaching states in the parser.  
 
The 46 classes in XQR_RLX class architecture are very complex.  To make sure that 
every possible RXLQuery query can be represented in XQR_RLX class hierarchy is a 
tedious development process.  The 46 classes will require tremendous amount of time 
maintenance if we need to debug or change design in the future. 
 
8.  Summary 
XML data model becomes more popular for information exchange and its data structure 
is quite different from the traditional relational data model.  XQuery is the query 
language for XML data model developed to match the power of SQL for relational 
model.  UCLA’s CoBase project previously has developed the SQL relaxation engine.  
Dongwon Lee’s Ph.D dissertation proposed the design of RLXQuery engine used for 
XQuery relaxation, but the implementation is not put into action. 
 
My work in the project is to help RLXQuery Engine’s design and development in the 
areas of RLXQuery EBNF, parser, and XQR_RLX class converter.  The RLXQuery 
parser, implemented in java, parse the RLXQuery string and generate a JJTree object 
representation of the query.  Then, XQR_RLX converter will convert the JJTree into 
RLXQuery object which is executed later by XQuery kernel.  The parser and converter 
are the major components for RLXQuery Engine.  This system will be used to evaluate 
our proposed XML query relaxation methodology.  
 
Reference 
 
[1]  XQuery 1.0 An XML Query Language: http://www.w3.org/TR/2003/WD-xquery-
20030822/ 
 



 13

[2]  XQuery 1.0 Grammar Test Page:  
http://www.w3.org/2003/05/applets/xqueryApplet.html 
 
[3]  Sharong Liu.  ITR: Query Relaxation for XML Database, 2002 
 
[4]  Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation (6 
October 2000), see http://www.w3.org/TR/REC-xml. 
[5]  Wesley W. Chu, Hua Yang and Gladys Chow. A Cooperative Database System 
(CoBase) for Query Relaxation in Proceedings of the Third International Conference on 
Artificial Intelligence Planning Systems. Edinburgh, May 1996. 
[6]  Dongwon Lee. "Query Relaxation for XML Model" 
In Ph.D Dissertation, University of California, Los Angeles, June 2002 
[7]  M. Mitra, A. Singhal, and C. Buckley.  “Improving Automatic Query Expansion”.  In 
ACM SIGIR, Melbourne, Autstralia, Aug 1998. 
 
[8]  W. W. Chu, Q. Chen, and A. Huang. “Query Answering via Cooperative 
Data Inference”. J. Intelligent Information Systems (JIIS), 3(1):57–87, Feb. 1994. 
 
[9]  S. Chaudhuri and L. Gravano. “Evaluating Top-k Selection Queries”. 
In VLDB, Edinburgh, Scotland, Sep. 1999. 
 
[10]  World Wide Web Consortium. XML Path Language (XPath) Version 1.0. W3C 
Recommendation, Nov. 16, 1999. See http://www.w3.org/TR/xpath.html 
 
[11]  J. Robie, J. Lapp, D. Schach. XML Query Language (XQL). See 
http://www.w3.org/TandS/QL/QL98/pp/xql.html. 
 
[12]  International Organization for Standardization (ISO). Information Technology-
Database Language SQL. Standard No. ISO/IEC 9075:1999. (Available from American 
National Standards Institute, New York, NY 10036, (212) 642-4900.) 
 
[13]  Java Compiler Compiler [tm] (JavaCC [tm]) - The Java Parser Generator.  See 
https://javacc.dev.java.net/. 
 
[14]  JavaCC Grammar Repository.  See http://www.cobase.cs.ucla.edu/pub/javacc/. 
 
[15]  Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: an XML Query 
Language for Heterogeneous Data Sources. In Lecture Notes in Computer Science, 
Springer-Verlag, Dec. 2000. 



 14

 
Appendix I:  RLXQuery Terminals 
 

UseXTah ::= “USE-XTAH” 
UseTah ::= “USE-TAH” 

NonRelaxable ::= “!” 
Tlide ::= ~ 

PoundSign ::= “#” 
SimilarTo ::= “SIMILAR-TO” 
BasedOn ::= “BASED-ON” 

PreferTag ::= “PREFER-TAG” 
RejectTag ::= “REJECT-TAG” 

Prefer ::= “PREFER” 
Reject ::= “REJECT” 

LabelV := “LABEL-V” 
LabelS := “LABEL-S” 

RelaxLevelS := “RELAX-LEVEL-S” 
RelaxLevelV := “RELAX-LEVEL-V” 

RelaxOrder ::= “RELAX-ORDER” 
RankBy ::= “RANK-BY” 
AtLeast ::= “AT-LEAST” 
Method := “METHOD” 

 



 15

 
Appendix II:  RLXQuery Non-Terminals 
 

RLXQuery ::= (FunctionDecl)* RLXQuerySpecification  
RLXQuerySpecification ::= RLXQuerySpecItem ((“union” | “intersect” | 

“except”)RLXQuerySpecItem)* 
RLXQuerySpecItem ::= RLXFLWORExpr | “(“ RLXQuerySpecification 

“)” 
RLXFLWORExpr ::= (RLXForClause | RLXLetClause)+ 

(RLXWhereClause)? (OrderByClause)?  
ReturnClause (RelaxationOrderClause | 
AtLeastClause | RankMethodClause )* 

RLXForClause ::= <ForVariable> <VarName> <In> BExpr (<Comma> 
<VariableIndicator> <VarName> <In> BExpr)* 

BExpr ::= FLWORExpr | (SpecialPathExpr 
PreferTagClause? RejectTagClause?) 

PreferTagClause ::= “PREFER-TAG” <Lpar> GeneralStringList<Rpar> 
RejectTagClause ::= “REJECT-TAG” <Lpar> GeneralStringList 

<Rpar> 
RLXLetClause ::= <LetVariable> <VarName> “:=” BExpr (<Comma> 

<VariableIndicator> <VarName> “:=”BExpr)* 
RLXWhereClause ::= “where” RLXWhereExpr 
RLXWhereExpr ::= RLXAndExpr (“or” RLXAndExpr)* 
RLXAndExpr ::= RLXCompExpr (“and” RLXCompExpr)* 
RLXCompExpr ::= CooperativeSearchCondition | 

ComparisionExpr  
   
CooperativeSearchCondition ::= CooperativeBooleanTerm (“or” 

CooperativeBooleanTerm)* 
CooperativeBooleanTerm ::= CooperativeBooleanFactor (“and” 

CooperativeBooleanFactor)* 
CooperativeBooleanFactor ::= CooperativeBooleanPrimary (“not” 

CooperativeBooleanPrimary)* 
CooperativeBooleanPrimary 

 
::= CooperativePredicate (TahAliasLevelClause)? 

| CooperativePredicate 
(XTahAliasLevelClause)? 
| <Lpar> CooperativeSearchCondition <Rpar> 
(TahAliasLevelClause)? 
| <Lpar> CooperativeSearchCondition <Rpar> 
(XTahAliasLevelClause)? 

   
TahAliasLevelClause ::= UseTahClause ((VConditionLabel 

VRelaxationLevel?) | (VRelaxationLevel 
VConditionLabel?))? 
|VConditionLabel ((VRelaxationLevel 
UseTahClause?) | (UseTahClause 



 16

VRelaxationLevel?))? 
|VRelaxationLevel ((VConditionLabel 
UseTahClause?) | (UseTahClause 
VConditionLabel?))? 

UseTahClause ::= <UseTah> StringLiteral 
VConditionLabel ::= <LabelV> StringLiteral 
VRelaxationLevel ::= <RelaxLevelV> NumericLiteral 
   
XTahAliasLevelClause ::= UseXTahClause (( SConditionLabel 

SRelaxationLevel?) | 
( SRelaxationLevel SConditionLabel?))? 
|SConditionLabel ((UseXTahClause 
SRelaxationLevel?) | (SRelaxationLevel | 
UseXTahClause)?)? 
|SRelaxationLevel (SConditionLabel 
UseXTahClause?) 
|(UseXTahClause SConditionLabel?))? 

UseXTahClause ::= ` 
SConditionLabel ::= <LabelS> StringLiteral 
SRelaxationLevel ::= <RelaxLevelS> NumericLiteral 
   
CooperativePredicate ::= CooperativeCompPredicate | 

MultipleSimilarToPredicate  
MultipleSimilarToPredicate ::= PathExprList “SIMILARTO” GeneralValueList 

(BasedOnClause)? 
PathExprList ::= “(“ PathExpr (“,” PathExpr)* “)” 
   
GeneralValueList ::= <Lpar> GeneralStringList <Rpar> 

|<Lpar> GeneralNumericList <Rpar> 
GeneralStringList ::= StringLiteral (<Comma> StringLiteral)* 
GeneralNumericList ::= GeneralNumericElem (<Comma> 

GeneralNumericElem)* 
GeneralNumericElem ::= SimpleNumericExpr | NumericRange 
NumericRange ::= <Lbrack>  NumericLiteral <Comma> 

NumericLiteral <Rbrack> 
SimpleNumericExpr ::= SimpleTerm ((<Plus>| <Minus>) SimpleTerm)* 
SimpleTerm ::= NumericLiteral ((<Multiply> | <Div> ) 

NumericLiteral )* 
   
BasedOnClause ::= <Lpar> BasedOnPathExprList <Rpar> 
BasedOnPathExprList ::= PathExprWeightList (<Comma> 

PathExprWeightList )* 
PathExprWeightList ::= <Lpar> PathExprWeightElem <Rpar> (<Comma> 

<Lpar> PathExprWeightElem <Rpar>)* 
PathExprWeightElem ::= PathExpr <Comma> NumericLiteral 
   



 17

CooperativeCompPredicate ::= CooperativePathExpr CompOpElem? 
CompOpElem ::= (GeneralComp ( CooperativeValueElem| 

PathExpr) (ValueRejectionList?))| ( 
SingleSimliarToElem  BasedOnClause?)  

GeneralComp ::= “<” | “>” | “<=” | “>=” | “=” |”!=” 
   
CooperativePathExpr ::= ApproximatePathExpr | NonRelaxablePathExpr 

| SpecialPathExpr 
ApproximatePathExpr ::= “~” “(“ PathExpr “)” 
NonRelaxablePathExpr ::= “!” “(“ PathExpr “)” 
SpecialPathExpr ::= <Root> SpecialRelativePathExpr? 

| <RootDescendants> SpecialRelativePathExpr 
| SpecialRelativePathExpr 

SpecialRelativePathExpr ::= SpecialStepExpr ((<NonRelaxable>)? (<Slash> 
| <SlashSlash>)) SpecialStepExpr)* 

SpecialStepExpr ::= SpecialAxisStep | SpecialFilterStep 
   
SpecialAxisStep ::= ( SimpAbbrevForwardStep | AbbrevReverseStep 

) SpecialPredicates 
SimpAbbrevForwardStep ::= "@"? SimpNodeTest 
AbbrevReverseStep ::= “...” 
SimpNodeTest ::= “text” “(“ “)”| QName | Wildcard 
   
SpecialPredicates ::= (“[“ SpecialPredicateExpr “]” )* 
SpecialPredicateExpr ::= SpecialPredicateTerm (“and” 

SpecialPredicateTerm)* 
SpecialPredicateTerm ::= ( “contains(” PredicatePathExpr “,” 

StringLiteral “)” ) |  
( “not (“ “contains(“ PredicatePathExpr “,” 
StringLiteral “))” ) | ( PredicatePathExpr 
CompOp PredicateValue ) 

   
PredicatePathExpr ::= ((“!”)? (“/” | “//”))? 

PredicateRelativePathExpr 
PredicateRelativePathExpr ::= PredicateStepExpr ((“!”)? (“/” | “//”) 

PredicateStepExpr)? 
PredicateStepExpr ::= AbbreForwardStep | Literal | “$” VarName  
PredicateValue ::= ApproximateValue | NonRelaxableValue | 

ConceptValue | Literal 
SpecialFunctionCall ::= “contains” “(“SpecialPathExpr, 

StringLiteral”)” | “count”  “(“ PathExpr 
”)” | “document” “(“ StringLiteral “)” 

   
SpecialFilterStep ::=  SpecialPrimaryExpr SpecialPredicates 
SpecialPrimaryExpr ::=  NonRelaxableNode | StringLiteral | (“$” 

VarName) | SpecialFunctionCall | “.”  



 18

NonRelaxableNode ::= <NonRelaxable> Literal  
   
SingleSimilarToElem ::= <SimilarTo> ExactValueExpr 
   
CooperativeValueElem ::= ConceptualValue | ApproximateValue | 

NonRelaxableValue | ((ExactValueExpr | 
ValuePreferenceList) ValueRejectionList?)  

ConceptualValue ::= “#” StringLiteral 
ApproximateValue ::= “~” ExactValueExpr 
NonRelaxableValue ::= “!” ExactValueExpr 
ValuePreferenceList ::= <Prefer> GeneralValueList 
ValueRejectionList ::= <Reject> GeneralValueList 
ExactValueExpr ::= StringLiteral | GeneralNumericElem 
   

   
AtLeastClause ::= <At-Least> IntegerLiteral 
RankMethodClause ::= <Rank-By><Lbrack>RankItem (<Comma> RankItem 

)*<Rbrack> (<Method> 
StringLiteral)? 

RankItem ::= <Lpar> (StringLiteral (<Comma> 
NumericLiteral)? ) <Rpar>  

RelaxationOrderClause ::= <RelaxOrder> RelaxOrderList 
RelaxOrderList ::= <Lpar> RelaxOrderElem <Rpar>  

| <Lbrace> RelaxOrderElem <Rbrace>  
|  <Lbrack> RelaxOrderElem <Rbrack> 

RelaxOrderElem ::= StringLiterall (<Comma> (StringLiteral | 
RelaxOrderList))* | RelaxOrderList (<Comma> 
StringLiteral)+ 

 



 19

 
Appendix III:  Parser Tree Example #1 
 
Query Example: 
 
for $d in document("dblp.xml")/dblp 
let $b := $d/paper PREFER-TAG("article", "proceedings") 
where $b/tile = PREFER("XML", "semi-structured data") and $b/year >!2002 
return $b 

 
Parser’s JJTree Output: 
 
|XPath2 
|   RLXQuery 
|      RLXQuerySpecification 
|         RLXQuerySpecItem 
|            RLXFLWORExpr 
|               RLXForClause 
|                  VarName b 
|                  In in 
|                  BExpr 
|                     SpecialPathExpr 
|                        SpecialStepExpr 
|                           SpecialFilterStep 
|                              SpecialFunctionCall 
|                                 DocumentsLpar document( 
|                                 StringLiteral "bib.xml" 
|                              SpecialPredicates 
|                        SlashSlash // 
|                        SpecialStepExpr 
|                           SpecialAxisStep 
|                              SimpAbbrevForwardStep 
|                                 SimpNodeTest 
|                                    QName book 
|                              SpecialPredicates 
|               RLXWhereClause 
|                  Where where 
|                  RLXWhereExpr 
|                     RLXAndExpr 
|                        RLXCompExpr 
|                           CooperativeBooleanTerm and 
|                              CooperativeBooleanTerm and 
|                                 TahAliasLevelExpr 
|                                    XTahAliasLevelExpr 
|                                       SimilarToExpr 
|                                          CooperativeCompPredicate 
|                                             CooperativePathExpr 
|                                                SpecialPathExpr 
|                                                   SpecialStepExpr 
|                                                      SpecialFilterStep 
|                                                         ApproximateNode ~$ 
|                                                         VarName b 
|                                                         SpecialPredicates 
|                                                   Slash / 
|                                                   SpecialStepExpr 
|                                                      SpecialAxisStep 
|                                                         SimpAbbrevForwardStep 
|                                                            SimpNodeTest 
|                                                               QName title 
|                                                         SpecialPredicates 
|                                                            Lbrack [ 
|                                                            SpecialPredicateExpr 
|                                                               SpecialPredicateTerm 



 20

|                                                                  ContainsLpar contains( 
|                                                                  PredicatePathExpr 
|                                                                     PredicateStepExpr 
|                                                                        Dot . 
|                                                                  StringLiteral "XML" 
|                                                            Rbrack ] 
|                                       XTahAliasLevelClause 
|                                          UseXTahClause 
|                                             UseXTah USE-XTAH 
|                                             QName t1 
|                                 TahAliasLevelExpr 
|                                    XTahAliasLevelExpr 
|                                       SimilarToExpr 
|                                          CooperativeCompPredicate 
|                                             CooperativePathExpr 
|                                                SpecialPathExpr 
|                                                   SpecialStepExpr 
|                                                      SpecialFilterStep 
|                                                         VarName b 
|                                                         SpecialPredicates 
|                                                   SlashSlash // 
|                                                   SpecialStepExpr 
|                                                      SpecialAxisStep 
|                                                         SimpAbbrevForwardStep 
|                                                            SimpNodeTest 
|                                                               QName year 
|                                                         SpecialPredicates 
|                                             CompOpElem 
|                                                SpecialComp 
|                                                   Gt > 
|                                                CooperativeValueElem 
|                                                   GeneralNumericElem 
|                                                      SimpleNumericExpr 
|                                                         SimpleTerm 
|                                                            IntegerLiteral 2001 
|                                    TahAliasLevelClause 
|                                       UseTahClause 
|                                          UseTah USE-TAH 
|                                          QName t2 
|                              TahAliasLevelExpr 
|                                 XTahAliasLevelExpr 
|                                    SimilarToExpr 
|                                       CooperativeCompPredicate 
|                                          CooperativePathExpr 
|                                             SpecialPathExpr 
|                                                SpecialStepExpr 
|                                                   SpecialFilterStep 
|                                                      VarName b 
|                                                      SpecialPredicates 
|                                                Slash / 
|                                                SpecialStepExpr 
|                                                   SpecialAxisStep 
|                                                      SimpAbbrevForwardStep 
|                                                         SimpNodeTest 
|                                                            QName price 
|                                                      SpecialPredicates 
|                                          CompOpElem 
|                                             SpecialComp 
|                                                Lt < 
|                                             CooperativeValueElem 
|                                                NonRelaxableValue 
|                                                   id ! 
|                                                   GeneralNumericElem 
|                                                      SimpleNumericExpr 
|                                                         SimpleTerm 
|                                                            IntegerLiteral 50 



 21

|                                 TahAliasLevelClause 
|                                    VConditionLabel 
|                                       id LABEL-V 
|                                       QName t3 
|               Return return 
|               ExprSingle 
|                  UnaryExpr 
|                     PathExpr 
|                        StepExpr 
|                           FilterStep 
|                              VarName b 
|                              Predicates 
|               AtLeastClause 
|                  id AT-LEAST 
|                  IntegerLiteral 5 
|               RelaxationOrderClause 
|                  id RELAX-ORDER 
|                  RelaxOrderList 
|                     Lbrack [ 
|                     RelaxOrderElem 
|                        RelaxOrderList 
|                           RelaxOrderElem 
|                              QName t1 
|                              QName t2 
|                        QName t3 
|                     Rbrack ] 
|               RankMethodClause 
|                  id RANK-BY 
|                  Lbrack [ 
|                  RankItem 
|                     QName t2 
|                     DecimalLiteral 0.4 
|                  RankItem 
|                     QName t3 
|                     DecimalLiteral 0.5 
|                  RankItem 
|                     QName t1 
|                     DecimalLiteral 0.6 
|                  Rbrack ] 



 22

 
Appendix IV:  Parser Tree Example #2 
 
Query Example: 
 
for $b in document("bib.xml")//book 
where ~$b/title[contains(., "XML")] USE-XTAH t1 and  
$b//year > 2001 USE-TAH t2 and $b/price < !50 LABEL-V t3 
return $b 
AT-LEAST 5 
 

Parser’s JJTree Output: 
 
|XPath2 
|   RLXQuery 
|      RLXQuerySpecification 
|         RLXQuerySpecItem 
|            RLXFLWORExpr 
|               RLXForClause 
|                  VarName d 
|                  In in 
|                  BExpr 
|                     SpecialPathExpr 
|                        SpecialStepExpr 
|                           SpecialFilterStep 
|                              SpecialFunctionCall 
|                                 DocumentsLpar document( 
|                                 StringLiteral "dblp.xml" 
|                              SpecialPredicates 
|                        Slash / 
|                        SpecialStepExpr 
|                           SpecialAxisStep 
|                              SimpAbbrevForwardStep 
|                                 SimpNodeTest 
|                                    QName dblp 
|                              SpecialPredicates 
|               RLXLetClause 
 
|                  LetVariable let $ 
|                  VarName b 
|                  ColonEquals := 
|                  BExpr 
|                     SpecialPathExpr 
|                        SpecialStepExpr 
|                           SpecialFilterStep 
|                              VarName d 
|                              SpecialPredicates 
|                        Slash / 
|                        SpecialStepExpr 
|                           SpecialAxisStep 
|                              SimpAbbrevForwardStep 
|                                 SimpNodeTest 
|                                    QName paper 
|                              SpecialPredicates 
|                     PreferTagClause 
|                        string PREFER-TAG( 
|                        GeneralStringList 
|                           StringLiteral "article" 
|                           StringLiteral "proceedings" 
|               RLXWhereClause 
|                  Where where 
|                  RLXWhereExpr 
|                     RLXAndExpr 
|                        RLXCompExpr 



 23

|                           CooperativeBooleanTerm and 
|                              TahAliasLevelExpr 
|                                 XTahAliasLevelExpr 
|                                    SimilarToExpr 
|                                       CooperativeCompPredicate 
|                                          CooperativePathExpr 
|                                             SpecialPathExpr 
|                                                SpecialStepExpr 
|                                                   SpecialFilterStep 
|                                                      VarName b 
|                                                      SpecialPredicates 
|                                                Slash / 
|                                                SpecialStepExpr 
|                                                   SpecialAxisStep 
|                                                      SimpAbbrevForwardStep 
|                                                         SimpNodeTest 
|                                                            QName tile 
|                                                      SpecialPredicates 
|                                          CompOpElem 
|                                             SpecialComp 
|                                                Equals = 
|                                             CooperativeValueElem 
|                                                ValuePreferenceList 
|                                                   string PREFER( 
|                                                   GeneralValueList 
|                                                      GeneralStringList 
|                                                         StringLiteral "XML" 
|                                                         StringLiteral "semi-structured data" 
|                              TahAliasLevelExpr 
|                                 XTahAliasLevelExpr\ 
|                                    SimilarToExpr 
|                                       CooperativeCompPredicate 
|                                          CooperativePathExpr 
|                                             SpecialPathExpr 
|                                                SpecialStepExpr 
|                                                   SpecialFilterStep 
|                                                      VarName b 
|                                                      SpecialPredicates 
|                                                Slash / 
 
|                                                SpecialStepExpr 
|                                                   SpecialAxisStep 
|                                                      SimpAbbrevForwardStep 
|                                                         SimpNodeTest 
|                                                            QName year 
|                                                      SpecialPredicates 
|                                          CompOpElem 
|                                             SpecialComp 
|                                                Gt > 
|                                             CooperativeValueElem 
|                                                NonRelaxableValue 
|                                                   id ! 
|                                                   GeneralNumericElem 
|                                                      SimpleNumericExpr 
|                                                         SimpleTerm 
|                                                            IntegerLiteral 2002 
|               Return return 
|               ExprSingle 
|                  UnaryExpr 
|                     PathExpr 
|                        StepExpr 
|                           FilterStep 
|                              VarName b 
|                              Predicates 
 


