
Comprehensive Exam Project
Advisor : Prof. Wesley Chu

Indexing Techniques for XML

Structure Patterns

Tony Lee

 klmarx@cs.ucla.edu

March 2003

 2

Indexing Techniques for XML Structure Patterns

Tony Lee

Table of Contents.

Abstract.

1. INTRODUCTION .. 4

2. RELATED WORK .. 5

3. PRELIMINARIES ... 6

3.1 Data Model ... 6

3.2 General Objectives ... 9

3.3 Space Complexity .. 9

4. PROBLEM DEFINED ... 11

5. APPROACHES ... 12

5.1 Feature Tranformation Based Indexing 12

5.2 Distance Function Based Indexing 13

6. INDEXING SOLUTIONS .. 14

6.1 Selection Routing .. 14

6.1.1 Representative Objects 15

6.2 Pruning Routing .. 17

6.2.1 Basic Data Structure of M-tree 18

6.2.2 Using M-tree to Answer Range Queries 19

6.2.3 Using M-tree to Answer KNN Queries 22

 3

6.2.4 Maintaining M-tree .. 23

7. Implementation ... 24

8. Summary .. 25

REFERENCES ... 27

APPENDIX A .. 29

APPENDIX B .. 30

 4

Abstract

The eXtensible Markup Language (XML) is intended to become a universal format

for structured documents and data. The main reason for relaxing XML query is due to

the heterogeneous and structural nature of XML data that can make query formation

tedious. Users need to know well the content as well as the structure of data to

formulate queries which is not easy, especially in the presence of optional data

elements. Therefore, relaxing XML queries becomes essential when no exact match is

found for a particular query. Moreover, users can explicitly instruct the search engine to

return, in addition to exact query matches, similar answers. This paper is intended to

presents a study on XML query relaxation using similarity clustering and conceptual

hierarchy, and the related indexing solutions.

1. Introduction

This Report investigates on X-TAH representative, the problem of indexing

fragments of XML data for the purpose of XML Query Relaxation.

The study of X-TAH representatives is motivated by the Type Abstraction Hierarchy

proposed and implemented by the CoBase project at UCLA. X-TAH stands for XML type

Abstraction Hierarchy, the XML version of the relational TAH. In a conventional database

system, queries are answered with absolute certainty. If the database search engine

cannot find an exact match to the user query, no result would be returned. Query

relaxation is applied when no exact answers to the user query can be found in the

database. In query relaxation, a query scope is relaxed to enlarge the search or include

additional information. Enlarging and shrinking a query scope can be accomplished by

viewing the queried objects at different conceptual levels, since an object representation

has wider coverage at a higher level and inversely, more narrow coverage at a lower

 5

level. TAH is created to provide multi-level knowledge representation for the data stored

in the data source [3].

X-TAH representative refers particularly to the representation of the internal nodes

of the indexing tree. Internal representation is of important concern because it enables

fast search for closest match to the given query in the data set clustered at the leaf level

in X-TAH. TAH can be constructed by clustering close data sets. Distance of two pieces

of data is defined by distance function [1,2]. Multiple clustering algorithms have been

proposed and implemented [1,2]. If no exact answer to a query is found in the

database, the process of query relaxation involves first finding the closest base cluster,

which contains actual data from the database, and then possibly further relaxing the

query by a series of generalization (traversing up) and specialization (traversing down)

in TAH. In other words, in order to relax query, a base cluster, one that is closest in

distance to the query, should be found by traversing down the hierarchy. The most

naïve way is scan over the entire set of data and find such cluster, which is very costly

in the presence of large amount of indexed data objects. X-TAH representative can

improve search efficiency by providing clues on which branch to explore at a particular

internal node in the search.

2. Related Works

Some other XML query relaxation techniques have been proposed in the past. In [9],

the authors proposes to uses weighted tree patterns and query evaluation joins to

accomplish query relaxation. The weighted tree pattern methods supports KNN search

and threshold. However, it is not clear how these weights to each node/edge can be

assigned that would accurate corresponds to the actual domain semantics. In [4], the

authors proposes to use some embedding criteria to find approximate subtree patterns

to the given query. However no similarity measure was specifically proposed to solve the

ranking problem; nor is that any indexing to make the embedding search in runtime

within practical limit. On the other hand, tree embedding technique can be

 6

complementary to our work in that it can be used to effectively reduce the candidate

data set by pruning away subtree patterns that do not make sense semantically or are

unlikely to be queried. In both techniques mentioned, the XML database engine needs

to be modified significantly to facilitate the relaxation process.

Our work focuses on relaxation based on similarity clustering and conceptual

hierarchy, called X-TAH, motivated by the similar approach taken in the Cobase project

[3]. The use of similarity clustering takes account of the semantics of the actual data;

general distance measure between trees in [6,7,8] and XML specific distance measure

proposed in [5] provides important insight into inter-object distance measure crucial to

similarity clustering. Furthermore, conceptual hierarchy enables a flexible query

relaxation process, for example, if the user is not satisfied by a particular set of answers

from previous relaxation, a refined queries can be found by simply traversing the

conceptual hierarchy. Moreover, X-TAH is built and runs on top of the existing XML

Database engines and thus make use of the existing efficient indexing capabilities.

3. Preliminaries

3.1 Data Model

A XML data repository consists of a collection of XML documents. Each of these

documents conforms to a specific schema. XML data can be viewed as a graph or tree.

Using IDREF and REF attributes, the same elements can appear at (be pointed to from)

many other places in the XML document. If we ignore these two attributes, XML data

can be viewed as trees. We further assume a bag/ordered tree model.

XML query matches (which are trees) can lie anywhere in the XML data tree. We

call the schema representation of these subtrees, “structure patterns”. That is, a

structure pattern can have multiple corresponding matches in the actual XML data.

In figure 1, there is a XML schema, three data instances that conform to that

schema, and three structure patterns extracted from the schema. T1 matches instance1;

T2 matches both instance 2 and 3; T3 does not have actual match in data, despite being

 7

Figure 1: XML data model example

(a) XML Schema

Instance 1

<book>

 <title> The Republic

</title>

</book>

Instance 2

<book>

 <title> The Warrior</title>

 <author> Millman

</author>

</book>

Instance 3

<book>

 <title> Peace</title>

 <author> Jack

</author>

</book>

(b) XML data instances

XML Schema
<xs:schema>
 <xs:element name="book">
 <xs:element name="title" type="xs:string“/>
 <xs:element name="author" type="xs:string" minOccurs="0" maxOccurs=“2"/>
 </xs:element>
</xs:schema>

 8

book book book

 | | | | | |

 title title author title au1 au2

T1 T2 T3

(c) XML Structure patterns extracted from data

 9

a potential structure pattern from the schema. In our indexing solution, we only

index structure patterns like T1 and T2 that have actual matches in the data.

In this report, we are only interested in relaxing the structure of XML data, i.e. the

difference between instance 2 and 3 are not considered basis for structural relaxation

since they have the same structure pattern, T2.

3.2 General Objectives

When users ask a XML query Q, the objective of query relaxation, in our case, is to

find some structure pattern Q’ (based on the already existing data) that closely match Q.

Q’ is a potential relaxed query. Q’ is then submitted to the XML data repository for exact

matches. Since Q’ is extracted from the existing data itself, Q’ is guaranteed to give the

user some results.

Therefore, objective of query relaxation is to find the structure patterns from the

data that approximate the original query. These structure patterns make up the set of

relaxed queries.

The following questions then arise:

1) how can we extract the structure patterns from the data? How many of them

are there?

2) how can we quickly find the structure patterns we want for a particular query?

In the next section, we answer the first question. And the rest of the report

addresses the second one.

3.3 Space Complexity

The problem of space complexity is to the exponential number of possible structure

patterns that exist in the data. A XML document can be viewed as a “big” tree, within

which, there are many sub-trees. Structure patterns are actually the schema(structural)

representation of these sub-trees. The number of possible sub-trees grows super-

exponentially with the number of tree nodes. Consider a full binary tree,

 10

T(n) is # of sub-trees of an n node tree.

 1 level: T(1) = 1

2 levels: T(3) = 4

3 levels: T(7) = 25

4 levels: T(15) = 676

The number of possible sub-trees is approximately,

Tf(n) ≈ (1 + T(n/f)) f, Tf(n) denote the number of sub-trees of n node tree with

fanout f.

It is too costly to enumerate all the possible sub-trees. However, we can

significantly reduce the space complexity in the following ways,

1) We only relax queries to structure patterns that have the same root node. This

requirement is due to the fact that the tree distance functions we found so far in

our research all take the assumptions that two trees, of which the distance is

calculated, have the same root node. Therefore, if we study the query pattern,

i.e. the frequently asked queries, we only consider the structure patterns that

have the same root node as these queries. If a large portion of the asked queries

have the same root nodes, we considered this class of queries frequent.

2) Typical size of XML queries is 2-6 levels deep and 3-4 fanout. We can limit our

consideration to the structure patterns that are of approximately the same size

as that of a typical query.

3) Some structural permutations can be pruned because they do not semantically

make sense or are unlikely to be queried. [4] suggested an algorithm to prune

away irrelevant permutations.

In short, we can always control which node to relax and to what extent in size.

Moreover, since indexing can be done offline, we can assume a large amount of storage

 11

available. Therefore, with ability to control relaxation extent, and the availability of

large storage space, search space complexity can be controlled within practical limit.

4. Problem Defined

Recall in section 3.2, the second question we are trying to address – How can we

quickly find the closely matched structure patterns for a particular query?

We therefore define the problem in terms of finding an algorithm that meets the

following requirements,

1) Optimality Requirement: find the closest match.

Given a query q and XML document set S, ST is the set of all possible sub-trees

in S, the algorithm should find a set of sub-trees Q’ ⊆ T such that

 ∀ t’ ∈ ST-Q’, ∀ t ∈ Q’, D(t’,q) > D(t,q)

 Relaxed set R = {Q’ U {q}}

2) Performance Requirement: Find the match fast

It is not uncommon in our case to have tens of millions of structure patterns,

a total scan would not be acceptable in that case. The actual evaluation for the

performance requirement would be done in implementation. The bottom line is

that the search time should not take longer than what the user can tolerate.

3) Maintainability requirement:

If a data structure is required for indexing purpose, can the data structure be

efficiently maintained in a relatively dynamic database environment. Our

general goal is to find an algorithm that enables fast similarity search.

 12

5. Approaches

In a naive way, we can scan all the structure patterns and find the closest match to

the query. Using brute force would guarantee that we find the closest match but

definitely result in poor performance. Therefore, indexing the structure patterns is

required for fast search. Indexing techniques can be generally categorized into two

classes, in terms of what is given about the indexed objects (structure patterns in our

case).

5.1 Feature Transformation Based Indexing

The first class of indexing techniques requires feature transformation, which

transforms important properties of complex objects into high-dimensional vectors

(feature vectors)[14,15]. Thus the similarity search corresponds to a search of points in

the feature space which are close to a given query point and therefore correspond to a

nearest neighbor search[11, 13]. The domain expert use domain knowledge to convert

domain objects into feature vectors and provide similarity measures based on those

feature vectors. Numerical data is an example of such transformation in which the

numerical value represents the location of an object in a single dimension space.

Once objects can be pinpointed in k-dimensional space, spatial clustering

techniques can be used to turn proximity search into exact match search. For example,

in the one dimensional case, if we can turn objects into one-dimensional points, we can

cluster them by ranges [1,2], e.g. ages can be clustered and represented by ranges

such as (10-30), (30-50) ...; a search can be conducted to find the range that contain

the asked age, once the range is found, it is certain that the closest matched ages must

be within the range (assuming that the boundary points {10,30,50} are actual data

points). Another example would be Voronoi cells [11]. Two-dimensional space can be

partition into some Voronoi cells, each of which contains 1 or 0 data point. Because

voronoi cell has such property that if a query point A is inside the cell that contains data

point B, B is guaranteed to be the closest point to A. Again, a proximity search becomes

 13

an exact-match search. Once the search becomes exact-match, many efficient high-

dimensional indexing can be used to index these clusters (R-tree, X-tree, etc)[11,15].

However, in the case of XML Query Relaxation, some important problems prohibit

us from using feature transformation for indexing. Most importantly, complex object

cannot always be transformed into multidimensional vectors,(represented as multi-

dimensional points), because complex similarity distance functions may not be

represented by a simple feature vector distance or the objects are too high in their

dimensionality as they could be efficiently managed by multi-dimensional index

structures. Furthermore, in our case, it is not entirely clear how a tree can be

transformed into a vector, i.e. what feature should be selected. Much essential tree

structural information may be lost in the transformation. For these reasons, feature

transformation is considered too difficult for indexing XML structure patterns.

5.2 Distance Function Based Indexing

If object cannot be transformed into vectors, distance function can be used for

indexing, since distance function measures the relative distance among objects. In this

way, objects are preserved. The trade-off lies in that, in indexing, we can only have an

approximate idea of where the leave objects lie, since only the pair-wise distance

between objects are provided.

We can build an index tree based on object distance alone, called X-TAH (XML Type

Abstraction Hierarchy), analogous to the relational TAH in the CoBase project [3]. The

advantage of an index tree is that based similarity clustering, an index tree can the

relaxation process by a sequence of generalization and specialization operations [3]. In

the remaining portion of this report, a method of building X-TAH is proposed, assuming

that a distance function is given to measure the distance between any two applicable

XML structure patterns.

To build X-TAH, first the structure patterns need to be clustered. There are

numerous clustering algorithms based on object distance function [1,2]. These are all

hierarchical clustering, which would result in a tree after the clustering. The leaves of

the tree are indexed objects (or references to them). In our case, the indexed objects

 14

are structure patterns. The second step is to assign representation to internal nodes of

the index tree.

X-TAH Representative, the internal node representation is a critical component of

the index tree because X-TAH cannot guide the relaxation process without first locating

the closest matched leaf (cluster). When the user asks a query, we need to traverse the

tree top-down to find the closest matching structure pattern. The brute-force approach

would conduct a linear search which is too costly. We cannot use hash table since it is

not an exact match search. To improve the search efficiency, the internal nodes perform

the routing function to direct the search to the leaf cluster where the (close) match can

be found.

For general purpose indexing, we can treat the algorithm of initial clustering a

black-box. Therefore, the task of efficiently finding closest match must lie in finding the

proper representation for the internal node and thus a good routing function.

We then simplify our problem by treating clustering as a black-box of which the

output is an index tree with clusters of structure patterns as leaves. And our problem

would be to find the representation of internal nodes to perform the routing function.

6. Indexing Solutions

There are generally two types are routing functions, Pruning and Selection. Section

6.1 gives a study on selection routing, and 6.2 presents an indexing scheme that uses

pruning routing.

6.1 Selection Routing

Selection routing picks the best choice at each decision point. Selection routing

general provides better performance than its pruning counterpart, because pruning

routing may result in multiple choices at each decision point. For selection routing, the

 15

difficulty mainly lie in finding a representation for internal node that have the following

property, assuming that the representation is a tree:

Given a query Q, internal T1 and T2; tree t1 lies in the leaf cluster that is

covered by T1, and t2 by T2.

for all t1 cover by T1, and all t2 cover by T2

if D(T1, Q) < D(T2, Q)

min(D(t1,Q) < min(D,t2)

This property can also be guaranteed if we consider t1 is one of the child node of

T1, and t2 of T2. This property guarantees that if each step we pick the node T that is

guaranteed to have the closest match in its subtree to Q, and prune away all others, we

can be certain the closest match lies in the leaf clusters in the sub-tree rooted at T.

The singular choice constraint in selection routing requires that the internal node of

the index tree must somehow provide a summary of all the nodes covered in its subtree;

moreover, such summary must fully characterizes the data objects it covers, in the

sense that its relation to the query can reveal whether or not the closest matching data

object is in its subtree. The theoretical approach close to provide basis for selection

routing is feature transformation detailed in section 5. Feature transformation enables k-

dimensional “zoom-in” on the desired data object through indexing. However Feature

transformation is considered too hard a problem for solving XML relaxation indexing

because its rich semantic meaning encoded in its structured cannot be easily

represented in vectors.

6.1.1 Representative Objects

One kind of XML summary uses tree instead vector to summarize XML data.

Noticeably among various tree summary algorithms is the concept of representative

objects introduced by Stanford DB group and implemented in the Lore DBMS as

“DataGuides” [16,17,18]. The study of representative objects is motivated by purposes

of schema discovery and path querying of semi-structured data. Despite the difference

of the motivations from those that we have in hand, what interests us is the common

 16

characteristics of semi-structured data and XML data trees. In figure 2, there are five

XML data trees, which can be considered as structure patterns in our case, and

semistructured data in the case of RO.

b b b b b

| | / \ | / \

d e d e f e f

| | |

g n m

(1) (2) (3) (4) (5)

Figure 2a: XML data trees

And suppose that we decide to cluster subtree 1,2,and 3 together, and 4 and 5 into

another group. We can use Representative Objects R1 and R2 to represent the two

cluster respectively as in figure 2b.

 R1 R2

 b b

 / \ / \

d e e f

 | / \

 g n m

Figure 2b: Representative Objects

 17

R1 and R2 are considered the minimal summary for its clustered trees. However, in

general there is a n-to-n relationship between data trees and their summaries. In other

words, two different cluster of data trees can have the same representative and vice

versa. This creates a problem in X-TAH, since X-TAH requires that the summary must be

able to differentiate different clusters in search routing.

 Another problem with representative object is that in the summary, the sibling

relationships are lost. For example, a query that is exactly like R1 will not have a match

in the cluster (trees 1,2,3 in figure 2) R1 covers. This deficiency can be improved by

adding statistics on the occurrences of nodes and edges in the data. However, even with

such modification, the summary cannot provide guarantee for the existence (in selection

routing) or non-existence(in pruning routing) of a closest match in its subtree.

6.2 Pruning Routing

In top-down tree search, pruning routing provided by a internal node determines

the set of child nodes on which to further conduct the search, by pruning away those

that are certain to contain none of the desired answers. The internal node

representation must therefore be able to provide information that gives non-existing

guarantees of desired answers. Even though there are many existing index tree

structures, the difficulty in applying these index structures is that trees are complex

object and it is not entirely clear how a cluster of trees can be directly summarized and

represented. M-Tree [8] solves this problem by avoiding creating an entirely new

representation for summarizing trees. M-Tree is a generic data structure for indexing

complex objects based upon object distance function alone. The object distance function

must satisfy the triangular inequality property, i.e. given three objects, o1, o2 and o3,

and distance function D,

 1. D(o1, o3) <= D(o1,o2) + D(o2, o3)

2. D(o1, o3) >= |D(o1,o2) – D(o2,o3)|

3. D(o1,o2) = D(o2,o1)

 18

Property 2 is actually equivalent to property 1, i.e., if property 1 holds, property 2

would hold as well. If structure pattern distance function satisfies property 1 and 3, we

can apply the idea of M-tree to index structure patterns.

Structure patterns are trees. tree distance function, as that we studied [5,6,7,8],

define tree distance by the cost incurred from a series of edit operations it takes to

transform one tree to the other. There might be potentially many different series of

operations that can transform one tree to the other, and tree distance is defined to be

the shortest “path” in terms of cost. It is not difficult to see that tree distance function

satisfies property 1, because, given that o1, o2 and o3 are trees in the previous example,

in the worse case, the distance between o1 and o3 can be obtained by transforming o1

to o2 and then o2 to o3. Tree distance function also satisfies property 3 since the edit

operations are reversible.

There are several aspects to the M-Tree index scheme: firstly, the algorithms for

range and KNN queries; secondly, the algorithms for maintaining the M-Tree data

structure, including insertion/deletion, and split policies.

6.2.1 Basic Data Structure of M-tree

M-Tree uses pruning routing, which disqualifies nodes that do not meet certain

criteria and thus must not contain results sought. One disadvantage of pruning, as

opposed to Selection, is that performance is not guaranteed, at each choice point, there

might be multiple choices that qualify; in the worst case, the whole tree is scanned. The

performance of M-Tree indexing is largely determined by degree of cohesion of the

clusters, that is how close the elements are to each other in the clusters. If at each level,

each cluster only contains elements very close to each other, for any query, maximum

number of nodes can then be pruned.

M-tree internal node, T, consists of the following: (see figure 3)

a. a tree: selected from one of T’s child nodes.

b. D(T,Tp), distance between T and T’s parent Tp

c. Covering radius of T,

 19

Dc = max(T,Tj), for all Tj in the sub-tree rooted at T (covered by T)

if T is just above the leaves, Dc = max(T,Tj), all Tj in the clusters

covered by T

If T is a internal node beyond the second lowest level,

 Dc = max (D(Tj, T) + Dc(Tj)), all child nodes of T

Both D(T,Tp) and Dc are pre-computed in building/maintaining the index tree.

6.2.2 Using M-tree to Answer Range Queries

Figure 3 illustrates the pruning process to answer range query using M-tree, i.e.

finding answers that are within certain distance to the query , M-tree performs the

following pruning searching:

Given an internal node T, its parent Tp and any node Tj covered by T. User asks a

query Q and wants to find structure patterns within distance of Dq from Q.

D(Q,Tp) : distance between Q and Tp

D(Q, T) : distance between Q and T

D(T,Tp) : distance between T and Tp (pre-computed and stored with T)

Dc(T) : covering radius of T

Dq : max error range for Q

We can prune away the sub-tree of T, if we can prove that D(Q,Tj) > Dq, for all Tj

covered by T.

We can disqualify T by examining the following inequality:

 | D(Q,Tp) – D(T,Tp)| > Dq + Dc(T) (1)

 20

Only D(Q,Tp) needs to be calculated, other values are already known. From

triangular inequality we have

 D(Q,T) >= | D(Q,Tp) – D(T,Tp)| (2)

From (1) and (2),

 D(Q,T) > Dq+ Dc(T) (3)

From Covering Radius

 D(Q,Tj) >= D(Q,T) – Dc(T), for all Tj covered by T (4)

From (3) and (4),

 D(Q,Tj) > Dq (5)

Therefore, just by calculating the distance between Q and Tp, we will be able to

prune away the children of Tp whose sub-tree certainly does not contain the answers

we seek. The complete algorithm in pseudo-code can be found in Appendix A.

 21

Figure 3: Internal pruning in answering range queries

• Explore internal node Tp
• Decide on pruning child node T
• Tj is one of the leaf nodes covered by

the subtree rooted at T, with maximum
distance to T, i.e. D(T,Tj) = Dc

Dq Q

D(Q,Tp)

D(T,Tp)

DC

Tp

Tp

T

Tj

…

T

...

Tree ViewTj

 22

6.2.3 Using M-tree to answer KNN Queries

To answer K-Nearest-Neighbor queries, The KNN algorithm uses a branch-and-

bound technique, with the use of two data structures, PR (a priority queue) and NN (a

K-element array) , in addition to the internal node data structure.

Firstly, two types of distances are defined, Dmax (T) and Dmin (T),

Let

Dmax (T) = D(T,Q) + Dc(T), assuming T is an internal node.

Dmax (T) is the upper-bound distance between query and any node in the subtree

covered by T.

Let

Dmin (T) = D(T,Q) - Dc(T), assuming T is an internal node.

Dmin (T) is the lower-bound distance between the query and any node in the subtree

covered by T.

PR holds the root nodes of the currently active subtrees that might contain the

results; PR initially contains the root node. The algorithm recursively pop elements one

at a time from PR and perform a search on its subtree.

NN contains the current k-nearest neighbors and will contain the results at the end

of the execution. NN is updated at each examination of tree nodes. NN contains two

types of values, D(T, Q), if T is the leave, Dmax(T) if T is an internal node.

If NN is sorted in ascending order, let Dk be the last element of NN and also the

largest distance among the current k nearest neighbors, while examining node T’, if

 Dmin (T’) > Dk ,

Which means that any node covered by T’ would not be or contain the KKN answer.

So T’ and the subtree it covers can be safely pruned away. Considering the following

simple example, assuming k = 1 (single closest match),

Radius of O3 and O4: R(O3) = 2. R(O4) = 3.

 23

Distance from O3, O4 to Q: D(O3,Q) = 3, D(O4,Q) = 10

dmax(O3) = 2 + 3 = 5

dmin(O4) = 10 – 3 = 7

=> dmin(O4) > dmax(O3)

* O4 does not contain the closest match, thus its subtree can be prune away in the

search.

The complete algorithm in pseudo-code can be found in Appendix A.

6.2.4 Maintaining M-Tree

One of the advantages of M-Tree is that it can be maintained dynamically, which

enables the indexing scheme useful in not only static but dynamic database environment.

Similar to many balanced tree data structure, M-Tree maintains itself by splitting and

merging internal nodes. The split policy in particular is a major factor in affecting the

indexing performance. The split policy includes promotion algorithm and node

distribution algorithm. Promotion algorithm determines two new routing objects (internal

nodes in place of the old one) when a split occurs, and the node distribution algorithm

determines how to distribute the objects in the original cluster to the two new clusters.

The ideal split policy should promote two routing objects such that the two new clusters

would have minimum covering radius and minimum “overlap” (maximum intra-cluster

distance). This goal is consistent with the objective of a good clustering algorithm to

produce most coherent clusters – minimize inter-object distance and maximize intra-

cluster distance.

 24

7. Implementation

In figure 4 is the general Cobase relaxation architecture. The current XTAH

implementation focuses on the XTAH mediator. The X-TAH mediator has two

components as shown in figure 5:

• XTAH Manager (online)

• XTAH Builder (offline)

XML structural patterns are first extracted as the basis for initial clustering. These

patterns are then run through a clustering algorithm (e.g. ICE) and written to a “pre-

XTAH” file. This process is under on-going research; the representation format of these

XML patterns are not yet finalized. To improve storage and file access efficiency, we use

object mapping, relating each structural pattern, as an object, to an object ID. This

mapping is recorded in a “object mapping” file, created along with the clustering.

XTAH Manager and Builder are implemented with JAVA in a complete object

oriented fashion. Specifically, we allow programmer to develop various object mapping

schemes that work with the two XTAH modules without recompilation. This is done by

defining an object specification interface.

XTAH Builder first parses the “pre-XTAH” file and “object mapping file”; it then

assigned internal objects by promoting objects that minimizes the covered clusters (refer

to the section 6). After internal assignments, a complete XTAH tree is built, which is

then written to a “XTAH” file. Both the “pre-XTAH” and “XTAH” file are written in XML

format.

XTAH manager implements the JAVA RMI interface, thus allowing remote client to

directly reference the XTAH manager object. XTAH manager loads the “XTAH” file as

requested by the client. XTAH manager supports operations such as specialization and

generalization. XTAH manager does not keep the internal state of querying (i.e. it would

not know which query is at which generalization/specialization level). This is so designed

such that the XTAH manager loaded with a particular XTAH can answer many different

 25

applicable queries without loading the same XTAH multiple times. The querying state is

kept by the Relaxation Manger which lies between the application client and XTAH

manager. Relaxation Manager keeps the querying state by obtaining the reference to a

“relaxation state” object after the first time it asks the XTAH manager to locate the

closest matched cluster.

Complete source code can be found in Appendix B.

8. Summary

 This report presents the study on using M-Tree algorithm to assign internal

representation of X-TAH. M-Tree is a promising indexing solution to X-TAH, because it

preserves complex objects like trees, and reduce our problems into finding a good

distance function and clustering algorithm. X-TAH differs from the original M-tree in that

the leaf clusters are initially constructed by similarity clustering; assuming good

clustering will group similar objects in a single cluster, the pruning should be more

effective than the general M-tree. Our first stage implementation shows promising

result of large percentage of data objects pruned in the searches conducted. Our object

oriented implementation facilitate further research on object representation and object

distance measure algorithms.

 26

Figure 4. Cobase Relaxation Architecture

Figure 5. X-TAH Mediator

 27

References

Clustering

[1] M. A. Merzbacher and W. W. Chu. Pattern-Based Clustering for Database Attribute Values in
Proceedings AAAI Workshop on Knowledge Discovery in Databases, Washington D.C., 1993. (8
Pages)

[2] Wesley W. Chu, Kuorong Chiang, Chih-Cheng Hsu, Henrick Yau, “An Error-based Conceptual
Clustering Method for Providing Approximate Query Answers”, 1996

[3] Wesley W. Chu, Hua Yang, Kuorong Chiang, Michael Minock, Gladys Chow, and
Chris Larson. “CoBase: A Scalable and Extensible Cooperative Information System”
Journal of Intelligence Information Systems. Vol 6, 1996, Kluwer Academic Publishers,
Boston, Mass.

Distance Function and Relevance Ranking

[4] T. Schlieder and F. Naumann. Approximate Tree Embedding for Querying XML Dasta. In
Proc. ACM SIGIR Workshop on XML and Information Retrieval, Athens, Greece, July 2000.

[5] P. Ciaccia and W. Penzo. Relevance Ranking Tuning for Similarity Queries on XML Data.
First VLDB Workshop on Efficiency and Effectiveness of XML Tools and Techniques (EEXTT
2002), Hong Kong, China, 2002. A. Nierman and H. V. Jagad

[6] K. Zhang and D. Shasha, “Simple Fast Algorithms for the Editing Distance between Trees and
Related Problems”, SIAM Journal of Computing, 18(6): 1245-1262, 1989

[7] K. Zhang and D. Shasha. Fast Algorithms for the unit cost editing distance between trees.
Journal of Algorithms, 11:581-621, 1990

[8] K. Zhang, R. Statman, D. Shasha, “On the Editing Distance between Unordered Labeled
Trees”, Information Processing Letters, 42: 133-139, 1992

[9] S. Amer-Yahia, S. Cho, D. Srivastava (AT&T Labs), “Tree Pattern Relaxation”, EDBT 2002

KNN Indexing

[10] Thomas Seidl, hans-Peter Kriegel, “Optimal Multi-step k-Nearest Neighbor Search”, SIGMOD
‘98

[11] Stefan Berchtold, Bernhard Ertl, Daniel A. Keim, Hans-Peter Krigel, Thomas Seidl, “Fast
Nearest Neighbor Search in High-dimensional Space”, International Conference on Data
Engineering (ICDE ’98), Orlando, Florida.

[12] Paolo Ciaccia, Marco Patella, Pavel Zezula, “M-tree: An Efficient Access Method for Similarity
Search in Metric Spaces”

[13] David A. White Ramesh Jain, “Similarity Indexing : Algorithms and Performance”, 1999

 28

[14]Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, Angela Y. Wu, “An
Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions”, Fifth
annual ACM_SIAM Symp. 1998

[15] Stefan Berchtold, Daniel A. Keim Hans-Peter Kriegel, “The X-tree: In index Structure for
High-Dimensional Data”, 22nd VLDB conference, India, 1996

DataGuide
[16] Representative Objects: Concise Representations of Semi-structured, Hierarchical Data
Vetlozar Nestorov, Jeffrey Ullman, Janet Wiener, Sudarshan Chawathe
Proceedings of 13th International Conference on Data Engineering (ICDE'97), Birmingham,
England, April 1997.

[17]Inferring Structure in Semi-structured Data
Svetlozar Nestorov, Serge Abiteboul, Rajeev Motwani
Proceedings of Workshop on Management of Semistructured Data held in conjunction with
SIGMOD'97, Tucson, Arizona, May 1997.

[18] DataGuides: Enabling Query formulation and Optimization in Semi-structured Databases,
Roy Goldman and Jennifer Widom, Proceedings of the 23rd VLDB Conference, Athens, Greece,
1997

 29

Appendix A.

Pseudo-code for Range Queries:

RS(N:node, Q:query_object, r(Q): search_radius){
 let Op be the parent object of node N;
 if N is not a leaf
 then {
 for all Or in N do:
 if | d(Op, Q) - d(Or, Op) | <= r(Q) + r(Or)
 then {

Compute d(Or, Q);
if d(Or, Q) <= r(Q) + r(Or)
then RS(* ptr(T(Or)), Q, r(Q));}}

 else{
 for all Oj in N do:
 if | d(Op,Q) – d(Oj,Op) | <= r(Q)
 then {
 compute d(Oj,Q);
 if d(Oj,Q) <= r(Q)
 then add oid(Oj) to the result;}}

Pseudo-code for KNN Queries:

K-NN_NodeSearch(N: node, Q: query_object, k:integer)
{
 let Op be the parent object of node N;
 if | d(Op,Q) – d(Or, Op| <= dk + r(Or) then.
 {
 compute d(Or, Q);

 if dmin(T(Or)) <= dk then
 {
 add [ptr(T(Or)), dmin(T(Or))] to PR;
 if dmax(T(Or)) < dk then
 {
 dk = NN_Update([_, dmax(T(Or))]);
 remove from PR all entries for which dmin(T(Or)) < dk; }}}}
 else /* N is a leaf */
 {
 for all Oj in N do:
 if {d(Op, Q)-d(Oj,Op)| <= dk then
 {
 compute d(Oj,Q);
 if d(Oj,Q) <= dk then
 {
 dk = NN_update([oid(Oj), d(Oj,Q)]);
 remove from PR All entries for which dmin(T(Or)) > dk; }}}}

 30

Appendix B.

package cobase.xtah;
import org.dom4j.*;
import java.util.Vector;
import java.util.Iterator;
/**
 * Title: XTBuilder.java
 * Description: X-TAH builder
 * Copyright: Copyright (c) 2003
 * Company: Cobase, UCLA
 * @author: Tony Lee
 * @version 1.0
 */

public class XTBuilder {
 private ObjSpec obs;
 private Document doc;
 public XTBuilder(Document doc, ObjSpec obs) {
 this.obs = obs;
 this.doc = doc;
 }
 public boolean Process(){
 buildXT_A(doc.getRootElement());
 buildXT_B(doc.getRootElement());
 return true;
 }

 private void buildXT_B(Element elm){
 float dtop;
 if(elm.isRootElement()) dtop = 0;
 else dtop = obs.distMeasure(elm.attributeValue("id"),elm.getParent().attributeValue("id"));
 elm.addAttribute("dtop", String.valueOf(dtop));
 for(int i = 0, size = elm.nodeCount(); i < size; i++){
 Node node = elm.node(i);
 if(node instanceof Element) buildXT_B((Element) node);
 }
 }

 private Vector buildXT_A(Element elm){
 Vector coverage = new Vector();
 Attribute temp;
 float rad=0;
 String id;

 if(elm.nodeCount()==0){
 rad = 0;
 assignAttrib(elm,rad,null,coverage);
 coverage.add(elm.attributeValue("id"));
 return coverage;
 }
 for(int i = 0, size = elm.nodeCount(); i < size; i++) {

 31

 Node node = elm.node(i);
 if(node instanceof Element)
 coverage.addAll(buildXT_A((Element)node));
 }
 Candidate cd;
 cd = promoteFrom(coverage);
 assignAttrib(elm,cd.rad,cd.id,coverage);
 return coverage;
 }

 private void TestLoop(Element elm){
 if(elm.nodeCount()==0) return;
 else{
 for(int i = 0, size = elm.nodeCount(); i < size; i++)
 TestLoop((Element)elm.node(i));
 }
 }
 private Candidate promoteFrom(Vector coverage){
 if(coverage.isEmpty()) return null;
 Candidate cd;
 float min_rad = -1;
 String cur_cand = "-1";
 float max_dist = 0;
 for(int i=0; i<coverage.size(); i++){
 for(int j=0; j<coverage.size(); j++){
 float dist = obs.distMeasure((String)coverage.elementAt(i),(String)coverage.elementAt(j));
 if (dist > max_dist) max_dist = dist;
 }
 if(min_rad == -1){
 min_rad = max_dist;
 cur_cand = (String) coverage.elementAt(i);
 }
 if(max_dist < min_rad){
 min_rad = max_dist;
 cur_cand = (String) coverage.elementAt(i);
 }
 max_dist = 0;
 }
 cd = new Candidate(min_rad, cur_cand);
 return cd;
 }
 public void assignAttrib(Element elm, float rad, String id, Vector cover){
 if(id!=null) elm.addAttribute("id", id);
 elm.addAttribute("rad", String.valueOf(rad));
 String coverage = new String("[");
 /*
 for(Iterator i=cover.iterator(); i.hasNext();){
 coverage+=i.next();
 coverage+=",";
 }
 coverage+="]";
 elm.addAttribute("coverage",coverage);
 */

 32

 }
 public class Candidate{
 public Candidate(float rad, String id){
 this.id = id;
 this.rad = rad;
 }
 String id;
 float rad;
 }
}

/* ================== */
package cobase.xtah;

/**
 * Title: ObjSpec.java
 * Description: Object specification Inteface
 * Copyright: Copyright (c) 2003
 * Company: Cobase, UCLA
 * @author: Tony Lee
 * @version 1.0
 */

public interface ObjSpec {
 public float distMeasure(String o1, String o2);
 public String toQuery(String id);
 public String mapQuery(String query);
 public void demapQuery(String id);
}

/* ================== */
package cobase.xtmag;
import java.rmi.*;
import java.rmi.server.*;
import java.util.*;
import cobase.xtah.*;
import org.dom4j.*;
import java.io.*;
import java.net.*;
/**
 * Title: XTmanager.java
 * Description: X-TAH manager
 * Copyright: Copyright (c) 2003
 * Company: Cobase, UCLA
 * @author: Tony Lee
 * @version 1.0
 */

public class XTManager extends UnicastRemoteObject implements XTRel{

 private Document xtdoc;
 private ObjSpec tos;

 33

 private TreeSet PR;
 private float dk;
 private Element target;
 private String qid;

 public XTManager(Document doc, ObjSpec obs) throws RemoteException{
 tos = obs;
 xtdoc=doc;

 //initialize
 target = null;
 dk = 0;
 PR = new TreeSet();
 }
 public RelState findTarget(String query) throws RemoteException{
 if(xtdoc == null) return null;
 //initalize state variables
 target = null;dk = 0;PR.clear();

 qid=tos.mapQuery(query);
 System.out.println(qid);

 Element root = xtdoc.getRootElement();
 dk = Float.POSITIVE_INFINITY ;
 searchTarget(root);
 RelState rs = new RelState();
 setState(target, rs);
 return rs;
 }

 private void setState(Element node, RelState rs) throws RemoteException{
 if(node == null) return;
 rs.addState(node);
 setState(node.getParent(),rs);
 }

 private void searchTarget(Element elm){
 boolean pr_prune = false;

 System.out.println(PR.toString());
 for(int i=0; i<elm.nodeCount(); i++){
 Node node = elm.node(i);
 if(!(node instanceof Element))
 continue;
 float rad = Float.parseFloat(((Element)node).attributeValue("rad"));
 float dist = tos.distMeasure(qid,((Element)node).attributeValue("id"));
 float n_dmax = dist + rad;
 float n_dmin = Math.max(dist-rad, 0);
 if(n_dmin < dk){ // qualify so far
 System.out.println("qualified element "+ ((Element)node).attributeValue("id"));
 PRPair pp = new PRPair((Element) node,n_dmin, n_dmax);
 PR.add(pp);

 34

 }
 if(n_dmax < dk) { dk = n_dmax; target = (Element) node; pr_prune = true; } //need to
prune PR
 }
 if(pr_prune == true){
 System.out.println("pruning "+PR.toString());
 while(!PR.isEmpty()){ //prune PR
 PRPair cur = (PRPair)PR.last();
 if(cur.dmin > dk) PR.remove(cur);
 else break;
 }
 System.out.println("pruning result: "+PR.toString());
 }
 while(!PR.isEmpty()){ //choose node to expand
 PRPair pp = (PRPair) PR.first();
 if(!PR.remove(pp)) System.out.println("error in removing element from PR queue!");
 searchTarget(pp.node);
 }
 return;
 }

 public Vector Generalize(RelState rs) throws RemoteException{
 if(!rs.canGeneralize()) return null;
 Vector cv = new Vector();
 findCoverage(cv, rs.walkUp());
 return cv;
 }
 public Vector Specialize(RelState rs) throws RemoteException{
 if(!rs.canSpecialize()) return null;
 Vector cv = new Vector();
 findCoverage(cv, rs.walkDown());
 return cv;
 }

 private void findCoverage(Vector coverage, Element elm){
 boolean is_leaf = true;
 if(elm == null) return;
 for (int i=0; i<elm.nodeCount(); i++){
 if(elm.node(i) instanceof Element){
 is_leaf = false;
 findCoverage(coverage, (Element)elm.node(i));
 }
 }
 if(is_leaf) coverage.add(tos.toQuery(elm.attributeValue("id")));
 }

 public String getXTProperties() throws RemoteException{ return null;}

 public void bindToNamingService() throws Exception{
 InetAddress addr = InetAddress.getLocalHost();
 String localHost = addr.getHostName();
 String nameURL = "//"+localHost + "/xtmanager";
 try {

 35

 Naming.bind(nameURL,this);
 System.out.println("XTManager bound");
 }catch (Exception e) {
 System.err.println("XTManager exception: " + e.getMessage());
 e.printStackTrace();
 }
 }
 public class PRPair implements Comparable{
 public Element node;
 public float dmax;
 public float dmin;
 public PRPair(Element node, float dmin,float dmax){
 this.node=node;
 this.dmin = dmin;
 this.dmax = dmax;
 }
 public int compareTo(Object pp){
 if(node.attributeValue("id").compareTo(((PRPair)pp).node.attributeValue("id")) == 0)
 return 0;
 else if(dmin <= ((PRPair)pp).dmin) return -1;
 else if(dmin > ((PRPair)pp).dmin) return 1;
 else return 0;
 }
 public String toString(){
 return node.attributeValue("id");
 }
 }
}

/* ================== */
package cobase.xtmag;
import java.util.*;
import java.io.Serializable;
import org.dom4j.*;
/**
 * Title: RelState.java
 * Description: Relaxation State
 * Copyright: Copyright (c) 2003
 * Company: Cobase.UCLA
 * @author: Tony Lee
 * @version 1.0
 */

public class RelState implements Serializable {
 int i;
 private Vector states;
 public RelState() {
 states = new Vector();
 i = 0;
 }
 public void addState(Element n){
 states.addElement(n);
 }

 36

 public boolean canGeneralize(){
 if(i>=states.size()) return false;
 else return true;
 }
 public boolean canSpecialize(){
 if(i>=0) return true;
 else return false;
 }
 public Element walkUp(){
 Element elm;
 if(i >= states.size()) return null;
 elm = (Element) states.elementAt(i);
 i++;
 return elm;
 }
 public Element walkDown(){
 if(i >= states.size()) i = states.size()-1;
 if(i < 0) return null;
 Element elm = (Element)states.elementAt(i);
 i--;
 return elm;
 }
 public void display(){
 if(states == null)
 return;
 String output = "States: ";
 for (Iterator i = states.iterator(); i.hasNext();) {
 Element elm = (Element) i.next();
 output+=elm.attributeValue("id")+" - ";
 }
 System.out.println(output);
}

/* ================== */
package cobase.xtmag;
import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.*;
import cobase.xtah.*;
/**
 * Title: XTRel.java
 * Description: X-TAH Relaxation Interface
 * Copyright: Copyright (c) 2003
 * Company: Cobase, UCLA
 * @author: Tony Lee
 * @version 1.0
 */
public interface XTRel extends Remote{
 RelState findTarget(String query) throws RemoteException;
 Vector Generalize(RelState rs) throws RemoteException;
 Vector Specialize(RelState rs) throws RemoteException;
 String getXTProperties() throws RemoteException;
}

