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Abstract 

 

The eXtensible Markup Language (XML) is intended to become a universal format 

for structured documents and data. The main reason for relaxing XML query is due to 

the heterogeneous and structural nature of XML data that can make query formation 

tedious. Users need to know well the content as well as the structure of data to 

formulate queries which is not easy, especially in the presence of optional data 

elements. Therefore, relaxing XML queries becomes essential when no exact match is 

found for a particular query. Moreover, users can explicitly instruct the search engine to 

return, in addition to exact query matches, similar answers. This paper is intended to 

presents a study on XML query relaxation using similarity clustering and conceptual 

hierarchy, and the related indexing solutions. 

 

 

1. Introduction  

 

This Report investigates on X-TAH representative, the problem of indexing 

fragments of XML data for the purpose of XML Query Relaxation. 

The study of X-TAH representatives is motivated by the Type Abstraction Hierarchy 

proposed and implemented by the CoBase project at UCLA. X-TAH stands for XML type 

Abstraction Hierarchy, the XML version of the relational TAH. In a conventional database 

system, queries are answered with absolute certainty. If the database search engine 

cannot find an exact match to the user query, no result would be returned. Query 

relaxation is applied when no exact answers to the user query can be found in the 

database. In query relaxation, a query scope is relaxed to enlarge the search or include 

additional information. Enlarging and shrinking a query scope can be accomplished by 

viewing the queried objects at different conceptual levels, since an object representation 

has wider coverage at a higher level and inversely, more narrow coverage at a lower 
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level. TAH is created to provide multi-level knowledge representation for the data stored 

in the data source [3]. 

X-TAH representative refers particularly to the representation of the internal nodes 

of the indexing tree. Internal representation is of important concern because it enables 

fast search for closest match to the given query in the data set clustered at the leaf level 

in X-TAH. TAH can be constructed by clustering close data sets. Distance of two pieces 

of data is defined by distance function [1,2]. Multiple clustering algorithms have been 

proposed and implemented [1,2]. If no exact answer to a query is found in the 

database, the process of query relaxation involves first finding the closest base cluster, 

which contains actual data from the database, and then possibly further relaxing the 

query by a series of generalization (traversing up) and specialization (traversing down)  

in TAH. In other words, in order to relax query, a base cluster, one that is closest in 

distance to the query, should be found by traversing down the hierarchy. The most 

naïve way is scan over the entire set of data and find such cluster, which is very costly 

in the presence of large amount of indexed data objects. X-TAH representative can 

improve search efficiency by providing clues on which branch to explore at a particular 

internal node in the search.  

 

 

2. Related Works 

 

Some other XML query relaxation techniques have been proposed in the past. In [9], 

the authors proposes to uses weighted tree patterns and query evaluation joins to 

accomplish query relaxation. The weighted tree pattern methods supports KNN search 

and threshold. However, it is not clear how these weights to each node/edge can be 

assigned that would accurate corresponds to the actual domain semantics. In [4], the 

authors proposes to use some embedding criteria to find approximate subtree patterns 

to the given query. However no similarity measure was specifically proposed to solve the 

ranking problem; nor is that any indexing to make the embedding search in runtime 

within practical limit. On the other hand, tree embedding technique can be 
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complementary to our work in that it can be used to effectively reduce the candidate 

data set by pruning away subtree patterns that do not make sense semantically or are 

unlikely to be queried. In both techniques mentioned, the XML database engine needs 

to be modified significantly to facilitate the relaxation process.  

Our work focuses on relaxation based on similarity clustering and conceptual 

hierarchy, called X-TAH, motivated by the similar approach taken in the Cobase project 

[3]. The use of similarity clustering takes account of the semantics of the actual data; 

general distance measure between trees in [6,7,8] and XML specific distance measure 

proposed in [5]  provides important insight into inter-object distance measure crucial to 

similarity clustering. Furthermore, conceptual hierarchy enables a flexible query 

relaxation process, for example, if the user is not satisfied by a particular set of answers 

from previous relaxation, a refined queries can be found by simply traversing the 

conceptual hierarchy. Moreover, X-TAH is built and runs on top of the existing XML 

Database engines and thus make use of the existing efficient indexing capabilities. 

  

 

3. Preliminaries 

 

3.1 Data Model 

A XML data repository consists of a collection of XML documents. Each of these 

documents conforms to a specific schema. XML data can be viewed as a graph or tree. 

Using IDREF and REF attributes, the same elements can appear at (be pointed to from) 

many other places in the XML document. If we ignore these two attributes, XML data 

can be viewed as trees. We further assume a bag/ordered tree model. 

XML query matches (which are trees) can lie anywhere in the XML data tree. We 

call the schema representation of these subtrees, “structure patterns”. That is, a 

structure pattern can have multiple corresponding matches in the actual XML data.  

In figure 1, there is a XML schema, three data instances that conform to that 

schema, and three structure patterns extracted from the schema. T1 matches instance1; 

T2 matches both instance 2 and 3; T3 does not have actual match in data, despite being  
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Figure 1: XML data model example 

 

 

(a) XML Schema 

 

 

 

Instance 1 

 

<book> 

     <title> The Republic 

</title> 

</book> 

Instance 2 

 

<book> 

     <title> The Warrior</title> 

     <author> Millman 

</author> 

</book> 

Instance 3 

 

<book> 

      <title> Peace</title> 

      <author> Jack 

</author> 

</book> 

 

(b) XML data instances 

 

 

 

 

 

 

XML Schema 
<xs:schema> 
  <xs:element name="book"> 
 <xs:element name="title" type="xs:string“/> 
 <xs:element name="author" type="xs:string" minOccurs="0" maxOccurs=“2"/> 
   </xs:element> 
</xs:schema> 
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book         book         book 

   |                |       |            |        |        | 

 title                  title  author        title   au1  au2 

    

T1               T2              T3 

 

(c) XML Structure patterns extracted from data 
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a potential structure pattern from the schema. In our indexing solution, we only 

index structure patterns like T1 and T2 that have actual matches in the data. 

In this report, we are only interested in relaxing the structure of XML data, i.e. the 

difference between instance 2 and 3 are not considered basis for structural relaxation 

since they have the same structure pattern, T2.  

 

3.2 General Objectives  

When users ask a XML query Q, the objective of query relaxation, in our case, is to 

find some structure pattern Q’ (based on the already existing data) that closely match Q.  

Q’ is a potential relaxed query. Q’ is then submitted to the XML data repository for exact 

matches. Since Q’ is extracted from the existing data itself, Q’ is guaranteed to give the 

user some results.  

Therefore, objective of query relaxation is to find the structure patterns from the 

data that approximate the original query. These structure patterns make up the set of 

relaxed queries.  

The following questions then arise: 

1) how can we extract the structure patterns from the data? How many of them 

are there? 

2) how can we quickly find the structure patterns we want for a particular query? 

In the next section, we answer the first question. And the rest of the report 

addresses the second one. 

 

3.3 Space Complexity 

The problem of space complexity is to the exponential  number of possible structure 

patterns that exist in the data. A XML document can be viewed as a “big” tree, within 

which, there are many sub-trees. Structure patterns are actually the schema(structural) 

representation of these sub-trees. The number of possible sub-trees grows super-

exponentially with the number of tree nodes. Consider a full binary tree, 
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T(n) is # of sub-trees of an n node tree. 

  1 level:  T(1) = 1 

2 levels: T(3) = 4 

3 levels: T(7) = 25 

4 levels: T(15) = 676 

The number of possible sub-trees is approximately, 

Tf(n) ≈ (1 + T(n/f)) f, Tf(n) denote the number of sub-trees of n node tree with 

fanout f. 

 

It is too costly to enumerate all the possible sub-trees. However, we can 

significantly reduce the space complexity in the following ways, 

1) We only relax queries to structure patterns that have the same root node. This 

requirement is due to the fact that the tree distance functions we found so far in 

our research all take the assumptions that two trees, of which the distance is 

calculated, have the same root node. Therefore, if we study the query pattern, 

i.e. the frequently asked queries, we only consider the structure patterns that 

have the same root node as these queries. If a large portion of the asked queries 

have the same root nodes, we considered this class of queries frequent. 

2) Typical size of XML queries is 2-6 levels deep and 3-4 fanout. We can limit our 

consideration to the structure patterns that are of approximately the same size 

as that of a typical query. 

3) Some structural permutations can be pruned because they do not semantically 

make sense or are unlikely to be queried. [4] suggested an algorithm to prune 

away irrelevant permutations. 

 

In short, we can always control which node to relax and to what extent in size. 

Moreover, since indexing can be done offline, we can assume a large amount of storage 
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available.  Therefore, with ability to control relaxation extent, and the availability of 

large storage space, search space complexity can be controlled within practical limit. 

 

 

4.  Problem Defined 

  

Recall in section 3.2, the second question we are trying to address – How can we 

quickly find the closely matched structure patterns for a particular query? 

We therefore define the problem in terms of finding an algorithm that meets the 

following requirements, 

1) Optimality Requirement: find the closest match. 

Given a query q and XML document set S, ST is the set of all possible sub-trees 

in S, the algorithm should find a set of sub-trees Q’ ⊆ T such that 

    ∀ t’ ∈ ST-Q’, ∀ t ∈ Q’, D(t’,q) > D(t,q) 

      Relaxed set R = {Q’ U {q}} 

 

2) Performance Requirement: Find the match fast 

It is not uncommon in our case to have tens of millions of structure patterns, 

a total scan would not be acceptable in that case. The actual evaluation for the 

performance requirement would be done in implementation. The bottom line is 

that the search time should not take longer than what the user can tolerate. 

 

3) Maintainability requirement:  

If a data structure is required for indexing purpose, can the data structure be 

efficiently maintained in a relatively dynamic database environment. Our 

general goal is to find an algorithm that enables fast similarity search.  
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5.  Approaches 

 

In a naive way, we can scan all the structure patterns and find the closest match to 

the query. Using brute force would guarantee that we find the closest match but 

definitely result in poor performance. Therefore, indexing the structure patterns is 

required for fast search. Indexing techniques can be generally categorized into two 

classes, in terms of what is given about the indexed objects (structure patterns in our 

case). 

 

5.1 Feature Transformation Based Indexing 

The first class of indexing techniques requires feature transformation, which 

transforms important properties of complex objects into high-dimensional vectors 

(feature vectors)[14,15]. Thus the similarity search corresponds to a search of points in 

the feature space which are close to a given query point and therefore correspond to a 

nearest neighbor search[11, 13]. The domain expert use domain knowledge to convert 

domain objects into feature vectors and provide similarity measures based on those 

feature vectors. Numerical data is an example of such transformation in which the 

numerical value represents the location of an object in a single dimension space. 

Once objects can be pinpointed in k-dimensional space, spatial clustering 

techniques can be used to turn proximity search into exact match search. For example, 

in the one dimensional case, if we can turn objects into one-dimensional points, we can 

cluster them by ranges [1,2], e.g. ages can be clustered and represented by ranges 

such as (10-30), (30-50) ...;  a search can be conducted to find the range that contain 

the asked age, once the range is found, it is certain that the closest matched ages must 

be within the range (assuming that the boundary points {10,30,50} are actual data 

points). Another example would be Voronoi cells [11]. Two-dimensional space can be 

partition into some Voronoi cells, each of which contains 1 or 0 data point. Because 

voronoi cell has such property that if a query point A is inside the cell that contains data 

point B, B is guaranteed to be the closest point to A. Again, a proximity search becomes 



 13

an exact-match search. Once the search becomes exact-match, many efficient high-

dimensional indexing can be used to index these clusters (R-tree, X-tree, etc)[11,15].  

However, in the case of XML Query Relaxation, some important problems prohibit 

us from using feature transformation for indexing. Most importantly, complex object 

cannot always be transformed into multidimensional vectors,(represented as multi-

dimensional points), because complex similarity distance functions may not be 

represented by a simple feature vector distance or the objects are too high in their 

dimensionality as they could be efficiently managed by multi-dimensional index 

structures. Furthermore, in our case, it is not entirely clear how a tree can be 

transformed into a vector, i.e. what feature should be selected. Much essential tree 

structural information may be lost in the transformation. For these reasons, feature 

transformation is considered too difficult for indexing XML structure patterns. 

 

5.2 Distance Function Based Indexing 

If object cannot be transformed into vectors, distance function can be used for 

indexing, since distance function measures the relative distance among objects. In this 

way, objects are preserved. The trade-off lies in that, in indexing, we can only have an 

approximate idea of where the leave objects lie, since only the pair-wise distance 

between objects are provided. 

We can build an index tree based on object distance alone, called X-TAH (XML Type 

Abstraction Hierarchy), analogous to the relational TAH in the CoBase project [3]. The 

advantage of an index tree is that based similarity clustering, an index tree can the 

relaxation process by a sequence of generalization and specialization operations [3]. In 

the remaining portion of this report, a method of building X-TAH is proposed, assuming 

that a distance function is given to measure the distance between any two applicable 

XML structure patterns. 

To build X-TAH, first the structure patterns need to be clustered. There are 

numerous clustering algorithms based on object distance function [1,2]. These are all 

hierarchical clustering, which would result in a tree after the clustering. The leaves of 

the tree are indexed objects (or references to them). In our case, the indexed objects 
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are structure patterns. The second step is to assign representation to internal nodes of 

the index tree. 

X-TAH Representative, the internal node representation is a critical component of 

the index tree because  X-TAH cannot guide the relaxation process without first locating 

the closest matched leaf (cluster). When the user asks a query, we need to traverse the 

tree top-down to find the closest matching structure pattern. The brute-force approach 

would conduct a linear search which is too costly. We cannot use hash table since it is 

not an exact match search. To improve the search efficiency, the internal nodes perform 

the routing function to direct the search to the leaf cluster where the (close) match can 

be found.  

For general purpose indexing, we can treat the algorithm of initial clustering a 

black-box. Therefore, the task of efficiently finding closest match must lie in finding the 

proper representation for the internal node and thus a good routing function.  

We then simplify our problem by treating clustering as a black-box of which the 

output is an index tree with clusters of structure patterns as leaves. And our problem 

would be to find the representation of internal nodes to perform the routing function.  

 

 

6. Indexing Solutions 

 

There are generally two types are routing functions, Pruning and Selection. Section 

6.1 gives a study on selection routing, and 6.2 presents an indexing scheme that uses 

pruning routing.  

 

6.1 Selection Routing 

Selection routing picks the best choice at each decision point. Selection routing 

general provides better performance than its pruning counterpart, because pruning 

routing may result in multiple choices at each decision point. For selection routing, the 



 15

difficulty mainly lie in finding a representation for internal node that have the following 

property, assuming that the representation is a tree: 

Given a query Q, internal T1 and T2; tree t1 lies in the leaf cluster that is 

covered by T1, and t2 by T2.  

for all t1 cover by T1, and all t2 cover by T2  

if D(T1, Q) < D(T2, Q) 

min(D(t1,Q) < min(D,t2)  

 

This property can also be guaranteed if we consider t1 is one of the child node of 

T1, and t2 of T2. This property guarantees that if each step we pick the node T that is 

guaranteed to have the closest match in its subtree to Q, and prune away all others, we 

can be certain the closest match lies in the leaf clusters in the sub-tree rooted at T. 

The singular choice constraint in selection routing requires that the internal node of 

the index tree must somehow provide a summary of all the nodes covered in its subtree; 

moreover, such summary must fully characterizes the data objects it covers, in the 

sense that its relation to the query can reveal whether or not the closest matching data 

object is in its subtree. The theoretical approach close to provide basis for selection 

routing is feature transformation detailed in section 5. Feature transformation enables k-

dimensional “zoom-in” on the desired data object through indexing.  However Feature 

transformation is considered too hard a problem for solving XML relaxation indexing 

because its rich semantic meaning encoded in its structured cannot be easily 

represented in vectors. 

 

6.1.1 Representative Objects 

One kind of XML summary uses tree instead vector to summarize XML data. 

Noticeably among various tree summary algorithms is the concept of representative 

objects  introduced by Stanford DB group and implemented in the Lore DBMS as 

“DataGuides” [16,17,18]. The study of representative objects is motivated by purposes 

of schema discovery and path querying of semi-structured data. Despite the difference 

of the motivations from those that we have in hand, what interests us is the common 
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characteristics of semi-structured data and XML data trees. In figure 2, there are five 

XML data trees, which can be considered as structure patterns in our case, and 

semistructured data in the case of RO.  

 

b    b      b           b      b      

|      |    /  \         |     /   \ 

d     e    d   e        f    e    f 

|                        |           | 

g               n      m 

 

(1)  (2)  (3)          (4)    (5) 

 

Figure 2a: XML data trees 

 

And suppose that we decide to cluster subtree 1,2,and 3 together, and 4 and 5 into 

another group. We can use Representative Objects R1 and R2 to represent the two 

cluster respectively as in figure 2b. 

 

    R1   R2 

   b                      b 

  /  \   /  \        

d    e                e     f 

      |           /   \ 

      g                   n     m 

Figure 2b: Representative Objects 
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R1 and R2 are considered the minimal summary for its clustered trees. However, in 

general there is a n-to-n relationship between data trees and their summaries. In other 

words, two different cluster of data trees can have the same representative and vice 

versa. This creates a problem in X-TAH, since X-TAH requires that the summary must be 

able to differentiate different clusters in search routing.  

 Another problem with representative object is that in the summary, the sibling 

relationships are lost. For example, a query that is exactly like R1 will not have a match 

in the cluster (trees 1,2,3 in figure 2) R1 covers. This deficiency can be improved by 

adding statistics on the occurrences of nodes and edges in the data. However, even with 

such modification, the summary cannot provide guarantee for the existence (in selection 

routing) or non-existence(in pruning routing) of a closest match in its subtree. 

 

6.2 Pruning Routing 

In top-down tree search, pruning routing provided by a internal node determines 

the set of child nodes on which to further conduct the search, by pruning away those 

that are certain to contain none of the desired answers. The internal node 

representation must therefore be able to provide information that gives non-existing 

guarantees of desired answers. Even though there are many existing index tree 

structures, the difficulty in applying these index structures is that trees are complex 

object and it is not entirely clear how a cluster of trees can be directly summarized and 

represented. M-Tree [8] solves this problem by avoiding creating an entirely new 

representation for summarizing trees. M-Tree is a generic data structure for indexing 

complex objects based upon object distance function alone. The object distance function 

must satisfy the triangular inequality property, i.e. given three objects, o1, o2 and o3, 

and distance function D, 

 

 1. D(o1, o3) <= D(o1,o2) + D(o2, o3) 

2. D(o1, o3) >= |D(o1,o2) – D(o2,o3)| 

3. D(o1,o2) = D(o2,o1) 
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Property 2 is actually equivalent to property 1, i.e., if property 1 holds, property 2 

would hold as well. If structure pattern distance function satisfies property 1 and 3, we 

can apply the idea of M-tree to index structure patterns. 

Structure patterns are trees. tree distance function, as that we studied [5,6,7,8], 

define tree distance by the cost incurred from a series of edit operations it takes to 

transform one tree to the other. There might be potentially many different series of 

operations that can transform one tree to the other, and tree distance is defined to be 

the shortest “path” in terms of cost. It is not difficult to see that tree distance function 

satisfies property 1, because, given that o1, o2 and o3 are trees in the previous example, 

in the worse case, the distance between o1 and o3 can be obtained by transforming o1 

to o2 and then o2 to o3. Tree distance function also satisfies property 3 since the edit 

operations are reversible. 

There are several aspects to the M-Tree index scheme: firstly, the algorithms for 

range and KNN queries; secondly, the algorithms for maintaining the M-Tree data 

structure, including insertion/deletion, and split policies. 

 

6.2.1 Basic Data Structure of M-tree 

M-Tree uses pruning routing, which disqualifies nodes that do not meet certain 

criteria and thus must not contain results sought. One disadvantage of pruning, as 

opposed to Selection, is that performance is not guaranteed, at each choice point, there 

might be multiple choices that qualify; in the worst case, the whole tree is scanned. The 

performance of M-Tree indexing is largely determined by degree of cohesion of the 

clusters, that is how close the elements are to each other in the clusters. If at each level, 

each cluster only contains elements very close to each other, for any query, maximum 

number of nodes can then be pruned. 

M-tree internal node, T,  consists of the following: (see figure 3) 

a. a tree: selected from one of T’s child nodes. 

b. D(T,Tp), distance between T and T’s parent Tp  

c. Covering radius of T, 
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Dc = max(T,Tj), for all Tj in the sub-tree rooted at T (covered by T) 

if T is just above the leaves, Dc = max(T,Tj), all Tj in the clusters 

covered by T 

If T is a internal node beyond the second lowest level,  

 Dc = max (D(Tj, T) + Dc(Tj)), all child nodes of T 

 

Both D(T,Tp) and Dc are pre-computed in building/maintaining the index tree. 

  

6.2.2 Using M-tree to Answer Range Queries 

Figure 3 illustrates the pruning process to answer range query using M-tree, i.e. 

finding answers that are within certain distance to the query , M-tree performs the 

following pruning searching: 

Given an internal node T, its parent Tp and any node Tj covered by T. User asks a 

query Q and wants to find structure patterns within distance of Dq from Q. 

 

D(Q,Tp)  : distance between Q and Tp 

D(Q, T)  : distance between Q and T 

D(T,Tp) : distance between T and Tp (pre-computed and stored with T) 

Dc(T)     : covering radius  of T 

Dq      : max error range for Q 

 

We can prune away the sub-tree of T, if we can prove that D(Q,Tj) > Dq, for all Tj 

covered by T. 

We can disqualify T by examining the following inequality: 

 | D(Q,Tp) – D(T,Tp)| > Dq + Dc(T)        (1) 
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Only D(Q,Tp) needs to be calculated, other values are already known. From 

triangular inequality we have 

 D(Q,T) >= | D(Q,Tp) – D(T,Tp)|     (2) 

 

From (1) and (2),  

 D(Q,T) >  Dq+ Dc(T)            (3) 

 

From Covering Radius 

 D(Q,Tj) >= D(Q,T) – Dc(T), for all Tj covered by T     (4) 

 

From (3) and (4), 

 D(Q,Tj) > Dq           (5) 

 

Therefore, just by calculating the distance between Q and Tp, we will be able to 

prune away the children of Tp whose sub-tree certainly does not contain the answers 

we seek. The complete algorithm in pseudo-code can be found in Appendix A. 
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Figure 3:  Internal pruning in answering range queries 

 

 

 

 

 

• Explore internal node Tp 
• Decide on pruning child node T 
• Tj is one of the leaf nodes covered by 

the subtree rooted at T, with maximum 
distance to T, i.e. D(T,Tj) = Dc 

 

Dq Q

D(Q,Tp) 

D(T,Tp) 

DC

Tp 

Tp 

T 

Tj

 
… 

T

... 

Tree ViewTj 
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6.2.3 Using M-tree to answer KNN Queries 

To answer K-Nearest-Neighbor queries, The KNN algorithm uses a branch-and-

bound technique, with the use of two data structures, PR (a priority queue) and NN (a 

K-element array) , in addition to the internal node data structure.  

Firstly, two types of distances are defined, Dmax (T) and Dmin  (T), 

Let 

Dmax (T) = D(T,Q) + Dc(T), assuming T is an internal node.  

Dmax (T) is the upper-bound distance between query and any node in the subtree 

covered by T.  

Let  

Dmin  (T) = D(T,Q) - Dc(T), assuming T is an internal node.  

Dmin (T) is the lower-bound distance between the query and any node in the subtree 

covered by T. 

PR holds the root nodes of the currently active subtrees that might contain the 

results; PR initially contains the root node. The algorithm recursively pop elements one 

at a time from PR and perform a search on its subtree.  

NN contains the current k-nearest neighbors and will contain the results at the end 

of the execution. NN is updated at each examination of tree nodes. NN contains two 

types of values, D(T, Q), if T is the leave, Dmax(T) if T is an internal node. 

If NN is sorted in ascending order, let Dk be the last element of NN and also the 

largest distance among the current k nearest neighbors, while examining node T’, if 

 Dmin (T’) > Dk , 

Which means that any node covered by T’ would not be or contain the KKN answer.  

So T’ and the subtree it covers can be safely pruned away.  Considering the following 

simple example, assuming k = 1 (single closest match), 

 

Radius of O3 and O4:   R(O3) = 2.  R(O4) = 3. 
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Distance from O3, O4 to Q: D(O3,Q) = 3, D(O4,Q) = 10 

dmax(O3) = 2 + 3 = 5 

dmin(O4) = 10 – 3 = 7 

=> dmin(O4) > dmax(O3) 

* O4 does not contain the closest match, thus its subtree can be prune away in the 

search. 

The complete algorithm in pseudo-code can be found in Appendix A. 

 

6.2.4 Maintaining M-Tree 

One of the advantages of M-Tree is that it can be maintained dynamically, which 

enables the indexing scheme useful in not only static but dynamic database environment. 

Similar to many balanced tree data structure, M-Tree maintains itself by splitting and 

merging internal nodes. The split policy in particular is a major factor in affecting the 

indexing performance. The split policy includes promotion algorithm and node 

distribution algorithm. Promotion algorithm determines two new routing objects (internal 

nodes in place of the old one) when a split occurs, and the node distribution algorithm 

determines how to distribute the objects in the original cluster to the two new clusters. 

The ideal split policy should promote two routing objects such that the two new clusters 

would have minimum covering radius and minimum “overlap” (maximum intra-cluster 

distance). This goal is consistent with the objective of a good clustering algorithm to 

produce most coherent clusters – minimize inter-object distance and maximize intra-

cluster distance.  
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7.  Implementation 

  

In figure 4 is the general Cobase relaxation architecture. The current XTAH 

implementation focuses on the XTAH mediator. The X-TAH mediator has two 

components as shown in figure 5:  

• XTAH Manager (online) 

• XTAH Builder (offline) 

 

XML structural patterns are first extracted as the basis for initial clustering. These 

patterns are then run through a clustering algorithm (e.g. ICE) and written to a “pre-

XTAH” file. This process is under on-going research; the representation format of these 

XML patterns are not yet finalized. To improve storage and file access efficiency, we use 

object mapping, relating each structural pattern, as an object, to an object ID. This 

mapping is recorded in a “object mapping” file, created along with the clustering.  

XTAH Manager and Builder are implemented with JAVA in a complete object 

oriented fashion. Specifically, we allow programmer to develop various object mapping 

schemes that work with the two XTAH modules without recompilation. This is done by 

defining an object specification interface. 

XTAH Builder first parses the “pre-XTAH” file and “object mapping file”; it then 

assigned internal objects by promoting objects that minimizes the covered clusters (refer 

to the section 6). After internal assignments, a complete XTAH tree is built, which is 

then written to a “XTAH” file. Both the “pre-XTAH” and “XTAH” file are written in XML 

format. 

XTAH manager implements the JAVA RMI interface, thus allowing remote client to 

directly reference the XTAH manager object. XTAH manager loads the “XTAH” file as 

requested by the client. XTAH manager supports operations such as specialization and 

generalization. XTAH manager does not keep the internal state of querying (i.e. it would 

not know which query is at which generalization/specialization level). This is so designed 

such that the XTAH manager loaded with a particular XTAH can answer many different 
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applicable queries without loading the same XTAH multiple times. The querying state is 

kept by the Relaxation Manger which lies between the application client and XTAH 

manager. Relaxation Manager keeps the querying state by obtaining the reference to a 

“relaxation state” object after the first time it asks the XTAH manager to locate the 

closest matched cluster. 

Complete source code can be found in Appendix B. 

 

 

 

8.  Summary 

  

 This report presents the study on using M-Tree algorithm to assign internal 

representation of X-TAH. M-Tree is a promising indexing solution to X-TAH, because it 

preserves complex objects like trees, and reduce our problems into finding a good 

distance function and clustering algorithm. X-TAH differs from the original M-tree in that 

the leaf clusters are initially constructed by similarity clustering; assuming good 

clustering will group similar objects in a single cluster, the pruning should be more 

effective than the general M-tree.  Our first stage implementation shows promising 

result of large percentage of data objects pruned in the searches conducted. Our object 

oriented implementation facilitate further research on object representation and object 

distance measure algorithms. 
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Figure 4.  Cobase Relaxation Architecture 

 

  

 

 

 

Figure 5.  X-TAH Mediator 
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Appendix A. 
 
 
Pseudo-code for Range Queries: 
 
RS(N:node, Q:query_object, r(Q): search_radius){ 
  let Op be the parent object of node N; 
   if N is not a leaf 
  then {  
   for all Or in N do: 
    if | d(Op, Q)  - d(Or, Op) | <= r(Q) + r(Or) 
    then {  

Compute d(Or, Q); 
if d(Or, Q) <= r(Q) + r(Or) 
then RS(* ptr(T(Or)), Q, r(Q));}} 

     else{ 
     for all Oj in N do: 
     if | d(Op,Q) – d(Oj,Op) | <= r(Q) 
     then { 
      compute d(Oj,Q); 
      if d(Oj,Q) <= r(Q) 
      then add oid(Oj) to the result;}} 
 
 
 
 
Pseudo-code for KNN Queries: 
 
K-NN_NodeSearch(N: node, Q: query_object, k:integer) 
{ 
 let Op be the parent object of node N; 
 if | d(Op,Q) – d(Or, Op| <= dk + r(Or) then. 
 { 
  compute d(Or, Q); 

  if dmin(T(Or)) <= dk then 
  { 
   add [ptr(T(Or)), dmin(T(Or))] to PR; 
   if dmax(T(Or)) < dk then 
   { 
    dk = NN_Update([_, dmax(T(Or))]); 
    remove from PR all entries for which dmin(T(Or)) < dk; }}}} 
 else /* N is a leaf */ 
 { 
  for all Oj in N do: 
  if {d(Op, Q)-d(Oj,Op)| <= dk then 
  { 
   compute d(Oj,Q); 
   if d(Oj,Q) <= dk then 
   { 
    dk = NN_update([oid(Oj), d(Oj,Q)]); 
    remove from PR All entries for which dmin(T(Or)) > dk; }}}} 
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Appendix B. 
 
package cobase.xtah; 
import org.dom4j.*; 
import java.util.Vector; 
import java.util.Iterator; 
/** 
 * Title: XTBuilder.java 
 * Description: X-TAH builder 
 * Copyright:    Copyright (c) 2003 
 * Company: Cobase, UCLA 
 * @author: Tony Lee 
 * @version 1.0 
 */ 
 
public class XTBuilder { 
  private ObjSpec obs; 
  private Document doc; 
  public XTBuilder(Document doc, ObjSpec obs) { 
    this.obs = obs; 
    this.doc = doc; 
  } 
  public boolean Process(){ 
    buildXT_A(doc.getRootElement()); 
    buildXT_B(doc.getRootElement()); 
    return true; 
  } 
 
  private void buildXT_B(Element elm){ 
     float dtop; 
     if(elm.isRootElement()) dtop = 0; 
     else dtop = obs.distMeasure(elm.attributeValue("id"),elm.getParent().attributeValue("id")); 
     elm.addAttribute("dtop", String.valueOf(dtop)); 
     for(int i = 0, size = elm.nodeCount(); i < size; i++){ 
      Node node = elm.node(i); 
      if(node instanceof Element) buildXT_B((Element) node); 
     } 
  } 
 
  private Vector buildXT_A(Element elm){ 
    Vector coverage = new Vector(); 
    Attribute temp; 
    float rad=0; 
    String id; 
 
    if(elm.nodeCount()==0){ 
      rad = 0; 
      assignAttrib(elm,rad,null,coverage); 
      coverage.add(elm.attributeValue("id")); 
      return coverage; 
    } 
    for(int i = 0, size = elm.nodeCount(); i < size; i++) { 
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      Node node = elm.node(i); 
      if(node instanceof Element) 
        coverage.addAll(buildXT_A((Element)node)); 
    } 
    Candidate cd; 
    cd = promoteFrom(coverage); 
    assignAttrib(elm,cd.rad,cd.id,coverage); 
    return coverage; 
  } 
 
  private void TestLoop(Element elm){ 
    if(elm.nodeCount()==0) return; 
    else{ 
      for(int i = 0, size = elm.nodeCount(); i < size; i++) 
        TestLoop((Element)elm.node(i)); 
    } 
  } 
  private Candidate promoteFrom(Vector coverage){ 
    if(coverage.isEmpty()) return null; 
    Candidate cd; 
    float min_rad = -1; 
    String cur_cand = "-1"; 
    float max_dist = 0; 
    for(int i=0; i<coverage.size(); i++){ 
      for(int j=0; j<coverage.size(); j++){ 
        float dist = obs.distMeasure((String)coverage.elementAt(i),(String)coverage.elementAt(j)); 
        if (dist > max_dist) max_dist = dist; 
      } 
      if(min_rad == -1){ 
        min_rad = max_dist; 
        cur_cand = (String) coverage.elementAt(i); 
      } 
      if(max_dist < min_rad){ 
        min_rad = max_dist; 
        cur_cand = (String) coverage.elementAt(i); 
      } 
      max_dist = 0; 
    } 
    cd = new Candidate(min_rad, cur_cand); 
    return cd; 
  } 
  public void assignAttrib(Element elm, float rad, String id, Vector cover){ 
     if(id!=null) elm.addAttribute("id", id); 
    elm.addAttribute("rad", String.valueOf(rad)); 
    String coverage = new String("[ "); 
    /* 
    for(Iterator i=cover.iterator(); i.hasNext(); ){ 
      coverage+=i.next(); 
      coverage+=","; 
    } 
    coverage+=" ]"; 
    elm.addAttribute("coverage",coverage); 
  */ 
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  } 
  public class Candidate{ 
    public Candidate(float rad, String id){ 
      this.id = id; 
      this.rad = rad; 
    } 
    String id; 
    float rad; 
  } 
} 
 
/* ================== */ 
package cobase.xtah; 
 
/** 
 * Title: ObjSpec.java 
 * Description: Object specification Inteface 
 * Copyright:    Copyright (c) 2003 
 * Company: Cobase, UCLA 
 * @author: Tony Lee 
 * @version 1.0 
 */ 
 
public interface ObjSpec { 
  public float distMeasure(String o1, String o2); 
  public String toQuery(String id); 
  public String mapQuery(String query); 
  public void demapQuery(String id); 
} 
 

/* ================== */ 
package cobase.xtmag; 
import java.rmi.*; 
import java.rmi.server.*; 
import java.util.*; 
import cobase.xtah.*; 
import org.dom4j.*; 
import java.io.*; 
import java.net.*; 
/** 
 * Title: XTmanager.java 
 * Description: X-TAH manager 
 * Copyright:    Copyright (c) 2003 
 * Company: Cobase, UCLA 
 * @author: Tony Lee 
 * @version 1.0 
 */ 
 
public class XTManager extends UnicastRemoteObject implements XTRel{ 
 
  private Document xtdoc; 
  private ObjSpec tos; 
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  private TreeSet PR; 
  private float dk; 
  private Element target; 
  private String qid; 
 
  public XTManager(Document doc, ObjSpec obs) throws RemoteException{ 
    tos = obs; 
    xtdoc=doc; 
 
    //initialize 
    target = null; 
    dk = 0; 
    PR = new TreeSet(); 
  } 
  public RelState findTarget(String query) throws RemoteException{ 
    if(xtdoc == null) return null; 
    //initalize state variables 
    target = null;dk = 0;PR.clear(); 
 
    qid=tos.mapQuery(query); 
    System.out.println(qid); 
 
    Element root = xtdoc.getRootElement(); 
    dk = Float.POSITIVE_INFINITY ; 
    searchTarget(root); 
    RelState rs = new RelState(); 
    setState(target, rs); 
    return rs; 
  } 
 
  private void setState(Element node, RelState rs) throws RemoteException{ 
    if(node == null) return; 
     rs.addState(node); 
     setState(node.getParent(),rs); 
  } 
 
  private void searchTarget(Element elm){ 
    boolean pr_prune = false; 
 
    System.out.println(PR.toString()); 
    for(int i=0; i<elm.nodeCount(); i++){ 
      Node node = elm.node(i); 
      if(!(node instanceof Element)) 
        continue; 
      float rad = Float.parseFloat(((Element)node).attributeValue("rad")); 
      float dist = tos.distMeasure(qid,((Element)node).attributeValue("id")); 
      float n_dmax = dist + rad; 
      float n_dmin = Math.max(dist-rad, 0); 
      if(n_dmin < dk){    // qualify so far 
        System.out.println("qualified element "+ ((Element)node).attributeValue("id")); 
        PRPair pp = new PRPair((Element) node,n_dmin, n_dmax); 
        PR.add(pp); 
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      } 
      if(n_dmax < dk) { dk = n_dmax; target = (Element) node; pr_prune = true; }  //need to 
prune PR 
    } 
    if(pr_prune == true){ 
      System.out.println("pruning "+PR.toString()); 
      while(!PR.isEmpty()){   //prune PR 
        PRPair cur = (PRPair)PR.last(); 
        if( cur.dmin > dk ) PR.remove(cur); 
        else break; 
      } 
      System.out.println("pruning result: "+PR.toString()); 
    } 
    while(!PR.isEmpty()){ //choose node to expand 
      PRPair pp = (PRPair) PR.first(); 
      if(!PR.remove(pp)) System.out.println("error in removing element from PR queue!"); 
      searchTarget(pp.node); 
    } 
    return; 
  } 
 
  public Vector Generalize(RelState rs) throws RemoteException{ 
    if(!rs.canGeneralize()) return null; 
    Vector cv = new Vector(); 
    findCoverage(cv, rs.walkUp()); 
    return cv; 
  } 
  public Vector Specialize(RelState rs) throws RemoteException{ 
    if(!rs.canSpecialize()) return null; 
    Vector cv = new Vector(); 
    findCoverage(cv, rs.walkDown()); 
    return cv; 
  } 
 
  private void findCoverage(Vector coverage, Element elm){ 
    boolean is_leaf = true; 
    if(elm == null) return; 
    for (int i=0; i<elm.nodeCount(); i++){ 
      if(elm.node(i) instanceof Element){ 
        is_leaf = false; 
        findCoverage(coverage, (Element)elm.node(i)); 
      } 
    } 
    if(is_leaf) coverage.add(tos.toQuery(elm.attributeValue("id"))); 
  } 
 
  public String getXTProperties() throws RemoteException{ return null;} 
 
  public void bindToNamingService() throws Exception{ 
      InetAddress addr = InetAddress.getLocalHost(); 
      String localHost = addr.getHostName(); 
      String nameURL = "//"+localHost + "/xtmanager"; 
      try { 
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        Naming.bind(nameURL,this); 
        System.out.println("XTManager bound"); 
      }catch (Exception e) { 
        System.err.println("XTManager exception: " + e.getMessage()); 
        e.printStackTrace(); 
      } 
    } 
  public class PRPair implements Comparable{ 
    public Element node; 
    public float dmax; 
    public float dmin; 
    public PRPair(Element node, float dmin,float dmax){ 
      this.node=node; 
      this.dmin = dmin; 
      this.dmax = dmax; 
    } 
    public int compareTo(Object pp){ 
      if(node.attributeValue("id").compareTo( ((PRPair)pp).node.attributeValue("id") ) == 0) 
        return 0; 
      else if(dmin <= ((PRPair)pp).dmin) return -1; 
      else if(dmin > ((PRPair)pp).dmin) return 1; 
      else return 0; 
    } 
    public String toString(){ 
      return node.attributeValue("id"); 
    } 
  } 
} 
 
/* ================== */ 
package cobase.xtmag; 
import java.util.*; 
import java.io.Serializable; 
import org.dom4j.*; 
/** 
 * Title: RelState.java 
 * Description: Relaxation State 
 * Copyright:    Copyright (c) 2003 
 * Company: Cobase.UCLA 
 * @author: Tony Lee 
 * @version 1.0 
 */ 
 
public class RelState implements Serializable { 
  int i; 
  private Vector states; 
  public RelState() { 
    states = new Vector(); 
    i = 0; 
  } 
  public void addState(Element n){ 
    states.addElement(n); 
  } 
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  public boolean canGeneralize(){ 
    if(i>=states.size())  return false; 
    else  return true; 
  } 
  public boolean canSpecialize(){ 
    if(i>=0) return true; 
    else return false; 
  } 
  public Element walkUp(){ 
    Element elm; 
    if(i >= states.size()) return null; 
    elm = (Element) states.elementAt(i); 
    i++; 
    return elm; 
  } 
  public Element walkDown(){ 
    if(i >= states.size()) i = states.size()-1; 
    if(i < 0) return null; 
    Element elm = (Element)states.elementAt(i); 
    i--; 
    return elm; 
  } 
  public void display(){ 
    if(states == null) 
      return; 
    String output = "States: "; 
    for (Iterator i = states.iterator(); i.hasNext(); ) { 
      Element elm = (Element) i.next(); 
      output+=elm.attributeValue("id")+" - "; 
    } 
    System.out.println(output); 
} 
 
/* ================== */ 
package cobase.xtmag; 
import java.rmi.Remote; 
import java.rmi.RemoteException; 
import java.util.*; 
import cobase.xtah.*; 
/** 
 * Title: XTRel.java 
 * Description: X-TAH Relaxation Interface 
 * Copyright:    Copyright (c) 2003 
 * Company: Cobase, UCLA 
 * @author: Tony Lee 
 * @version 1.0 
 */ 
public interface XTRel extends Remote{ 
  RelState findTarget(String query) throws RemoteException; 
  Vector Generalize(RelState rs) throws RemoteException; 
  Vector Specialize(RelState rs) throws RemoteException; 
  String getXTProperties() throws RemoteException; 
} 


