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ABSTRACT 
Querying document-centric XML collections with structure 
conditions improves retrieval precisions. The structures of such 
XML collections, however, are often too complex for users to 
fully grasp. Thus, for queries regarding such collections, it is 
more appropriate to retrieve answers that approximately match 
the structure and content conditions in these queries, a process 
also known as vague content and structure (VCAS) retrieval. 
Most existing XML engines, however, only support content-only 
(CO) retrieval and/or strict content and structure (SCAS) retrieval. 
To remedy these shortcomings, we propose an approach for 
VCAS retrieval using existing XML engines. Our approach first 
decomposes a VCAS query into a SCAS sub-query and a CO sub-
query, then uses existing XML engines to retrieve SCAS results 
and CO results for the decomposed sub-queries, and finally 
combines results from both retrievals to produce approximate 
results for the original query. Further, to improve retrieval 
precision, we propose two similarity metrics to adjust the scores 
of CO retrieval results by their relevancies to the path condition 
for the original query target. We evaluate our VCAS retrieval 
approach through extensive experiments with the INEX 04 XML 
collection and VCAS query sets. The experimental results 
demonstrate the effectiveness of our VCAS retrieval approach.  

1. INTRODUCTION 
The increasing use of the eXtensible Markup Language (XML) in 
scientific data repositories, digital libraries and web applications 
has increased the need for effective retrieving of information from 
these XML repositories. The INitiative for the Evaluation of XML 
retrieval (INEX) [1], for example, was established in April 2002 
and has prompted researchers worldwide to promote the 
evaluation of effective XML retrieval. 
XML information can be retrieved by means of either content-
only (CO) or content-and-structure (CAS) queries. CO queries, 
similar to keyword searches in text retrieval, contain only content 
related conditions. CAS queries contain both content and structure 
conditions, in which users specify not only what a result should 
be about (via content conditions) but also what that result is (via 
structural constraints). Thus, CAS queries are more expressive 
and have better retrieval precision as demonstrated in past 
research [10, 11, 13]. Specifying exact structural constraints in 
queries for document-centric XML collections, however, is not an 
easy task. Such collections are usually marked up with a large 
variety of tags. For example, there are about 170 different tags in 
the INEX document collection. Thus, it is often difficult for users 
to completely grasp the structure properties of such collections 
and specify the exact structural constraints in queries. Therefore, 

for queries regarding such collections, it is more appropriate to 
retrieve answers that approximately match the structure and 
content conditions in these queries, a process also known as vague 
content and structure (VCAS) retrieval. For example, suppose a 
user is looking for article sections about “internet security.” The 
VCAS retrieval may return article paragraphs about “internet 
security” to the user, even though they do not strictly satisfy the 
query’s structural constraint (i.e., article sections). 
Most existing XML engines, however, only support content only 
retrieval and/or strict content and structure (SCAS) retrieval. In 
SCAS retrieval, a query’s content conditions can be loosely 
interpreted, but the query target’s structural constraint must be 
processed strictly. A query target is a special node in the query’s 
structure conditions, whose matching elements in XML 
collections are returned as results. For example, suppose a user is 
interested in article sections about “internet security.” The SCAS 
retrieval will not return article paragraphs to the user even though 
they are relevant to “internet security.” Thus, compared to the 
SCAS retrieval, the new feature in the VCAS retrieval is the 
approximate processing of a query target’s structural constraint. 
This introduces two challenges to VCAS retrieval: 1) how to 
extend existing XML engines to derive results that approximately 
satisfy a query target’s structure condition; and 2) how to measure 
the relevancy of a result to a query target’s structural constraint.  
Many existing approaches to XML VCAS retrieval can be 
classified into two categories: 1) content-only approaches (e.g., 
[12]); and 2) relaxation-based approaches [1, 2]. The former 
approaches transform a VCAS query into a CO query by ignoring 
structural constraints; and such approaches are simple because 
XML engines can be directly used for the VCAS retrieval without 
any extensions. Such approaches, however, lose the precision 
benefits that can be derived from XML structures. The latter 
approaches relax a query’s structural constraints and then retrieve 
the SCAS results for the relaxed queries, which are approximate 
answers to the original query. Such approaches are systematic and 
efficient, but they may miss relevant answers due to its strict 
structural relaxation semantics.  
To remedy these problems, in this paper, we propose a general 
approach that extends existing XML engines for CO and SCAS 
retrieval to support effective VCAS retrieval. Our approach 
combines the simplicity advantage provided by CO retrieval and 
the precision advantage rendered by SCAS retrieval. Our retrieval 
process consists of three steps: 

• Decomposition. We decompose a VCAS query into a CO 
sub-query and a SCAS sub-query such that both sub-queries 
can be processed by existing XML engines.  
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• Retrieval. We use existing XML engines to retrieve CO and 
SCAS results for the two sub-queries.  

• Combination. Results from the SCAS retrieval are answer to 
one part of the original query and results from the CO 
retrieval are approximate answers to the remaining part of the 
original query. Thus, results from both retrievals can be 
combined to produce approximate answers to the original 
query. 

To improve retrieval precision, we adjust the score of a CO sub-
query result by the relevancy of the result to the path condition 
for the query target, which is measured by target path similarity. 
We propose two metrics to compute the target path similarity.   
To empirically evaluate the effectiveness of the proposed VCAS 
retrieval approach, we conduct extensive experiments on the 
INEX 04 document collection with all the 33 queries in the VCAS 
task. We use the INEX 04 VCAS relevance assessments as the 
“gold standard” to evaluate our experimental results.  
The rest of the paper is organized as follows. Section 2 introduces 
the XML data model, query language and VCAS retrieval task. In 
Section 3, we present our XML VCAS retrieval approach and the 
similarity metrics. We describe our experimental studies in 
Section 4. Section 5 overviews related works and Section 6 
concludes the paper. 

2. BACKGROUND 
2.1 XML Data Model 
We model an XML document as an ordered, labeled tree where 
each element (attribute) is represented as a node and each 
element-to-sub-element (element-to-attribute) relationship is 
represented as an edge between the corresponding nodes. We 
represent each node as a triple (id, label, <text>), where id 
uniquely identifies the node, label is the name of the 
corresponding element or attribute, and text is the corresponding 
element’s textual content or attribute’s value. Text is optional 
because not every element contains textual content. We consider 
an attribute as a special sub-element of an element and a reference 
IDREF as a special type of value.  
For example, Figure 1 shows a tree representation of a sample 
XML document collection. Each circle represents a node with the 
node id inside the circle and label beside the circle. To distinguish 
text nodes from element (attribute) nodes, the text of a node is 
linked to the node with a dotted line.  
We now introduce the definition for label path, which is useful 
for describing the group representation of an XML tree in Section 
3. A label path for a node v in an XML tree is a sequence of 
slash-separated labels of the nodes on the path from the root node 

to v. For example, node 6 in Figure 1 can be reached from the root 
node through the path: node 0 -> 1 -> 5 -> 6. Thus, the label path 
for node 6 is: /articles/article/body/section. 
2.2 Query Language 
We use a content-oriented XPath-like query language called 
Narrowed Extended XPath I (NEXI) [14], which is introduced by 
INEX. NEXI is based on a subset of XPath path expressions [1] 
with an extension of about functions.  The syntax of NEXI is: 
 

path1[abouts1]//…//pathn[aboutsn] 
 
where each path is a sequence of nodes connected by either 
parent-to-child (“/”) or ancestor-to-descendant (“//”) axes; each 
abouts is a Boolean combination of about functions. 
An about function, in the format of about(path, cont), 
requires that a certain context (i.e., path) should be relevant to a 
specific content description (i.e., cont). Given an about 
function α, we use α.path and α.cont to represent its path 
and cont parameters respectively. About functions have non-
Boolean semantics and thus they are the bases for result ranking.  
With the introduction of the NEXI query format, now let us look 
at a sample query in the NEXI format.  For example, suppose a 
user is searching for information on ‘route planning’ in articles 
that give an overview of intelligent transportation systems. Since 
‘route planning’ is only one aspect of an intelligent transportation 
system, the user limits the search on ‘route planning’ to document 
components, such as section. Thus she formulates her 
information needs in the following NEXI query Q1. 
 
Q1: //article[about(.//title, overview) and 
about(., intelligent transportation system)] 
//body///section[about(., route planning)] 
 
With the description of the NEXI query format, we now introduce 
some notations and terminologies, which are useful for describing 
our VCAS retrieval methodology in Section 3. 
Given a NEXI query Q in the format of path1[abouts1] 
//…//pathn[aboutsn], we call the last node on pathn, whose 
matches are returned as results, the query target. For example, in 
Q1, node section is the query target. Further, we define target 
content condition, denoted as Ct(Q), to be the union of the 
content descriptions in aboutsn. For instance, ‘route planning’ is 
Q1’s target content condition. Finally, we call path1, …,  pathn-1 
the support paths and pathn the target path. We represent the 
target path in a query Q as Pt(Q). Support paths and the target 
path provide different structural hints to a search engine: support 
paths indicate where to search and a target path suggests what to 
return.  For example, in Q1, //article is the support path and 
//body//section is the target path.  
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Figure 1: A tree representation of sample XML document collections. 
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2.3 VCAS Retrieval 
Specifying structure conditions in a CAS query is not an easy 
task, in particular for document-centric XML collections with a 
large variety of tag names. When users specify structural 
constraints in queries, they often have only a limited knowledge 
of the structure properties of such collections. In such cases, if we 
process a query’s structure conditions strictly, we may miss 
results that are not in rigid conformance with the structural 
constraints, but are highly relevant to users’ information needs. 
Thus, XML vague content and structure (VCAS) retrieval is 
introduced. The goal of VCAS retrieval is to help users with 
limited structural knowledge make the maximum utilization of 
XML structures for more precise retrieval. In VCAS retrieval, 
both the structure and content conditions can be processed 
approximately. Thus, the relevancy of a result is judged based on 
whether it satisfies a user’s information needs, but not on whether 
it strictly conforms to the structural constraints of the query. For 
example, for the sample query Q1, a user may judge XML nodes 
4, 9 and 18 in Figure 1 to be relevant, although these nodes do not 
exactly match the structure conditions in Q1.  

3. PROCESSING VCAS QUERIES 
In this section, we present a general approach to XML VCAS 
retrieval, which consists of three steps: decomposition, retrieval 
and combinations.  

3.1 Decomposition 
Given a VCAS query Q, in principle, both its support paths and 
target path can be approximately processed. In this paper, we 
assume that users are strict in their search contexts but flexible in 
returning answers. Therefore, we process support paths strictly 
and the target path approximately.  
With this assumption, our decomposition strategy is to decompose 
a VCAS query Q into two sub-queries: a CO sub-query, Qco, 
consisting of the target content condition and a SCAS sub-query, 
Qscas, consisting of support paths and all the about functions 
associated with these paths. Thus, we can use existing XML 
engines to perform CO and SCAS retrievals on the decomposed 
sub-queries respectively to collect XML nodes that approximately 
satisfy the target path and that strictly conform to the support 
paths. The following illustrates our decomposition process: 
Q: path1[abouts1]//…//pathn[aboutsn] 
Qco: //*[about(.,Ct(Q))], where Ct(Q) is the target 
content condition in Q. 
Qscas: path1[abouts1]//…// pathn-1[aboutsn-1]  
For example, the sample query Q1 in Section 2.2 is decomposed 
into the following two sub-queries: 
Q1co: //*[about(., route planning)]  
Q1scas: //article[about(.//title, overview) and 
about(., intelligent transportation system)] 
Q1co searches for all the XML nodes relevant to ‘route planning’; 
and Q1scas searches for article nodes relevant to ‘intelligent 
transportation system’ with a descendant node title about 
‘overview’. 

3.2 Retrieval 
After the query decomposition step, we use an existing XML IR 
engine to process the CO sub-query using CO retrieval and the 
SCAS sub-query using SCAS retrieval. We use our XML IR 

engine [8] to perform both retrievals. Our VCAS retrieval 
approach, however, can be used by any XML IR engine. In the 
following, we first overview our ranking model, and then describe 
how we apply this model to rank the CO and SCAS retrieval 
results.  

3.2.1 Ranking model 
The ranking model used in our XML IR engine is called the 
extended vector space model. This mode measures the relevancy 
of an XML node v to an about function α, where v satisfies the 
path condition in α. The model consists of two components: 
weighted term frequency (tfw) and inverse element frequency (ief).  
Weighted term frequency. Given a term t and an XML node v, 
suppose there are m different descendant nodes of v, say v1’, v2’, 
…, vm’, that contain term t in their texts. Let pi (1 ≤ i ≤ m) be the 
path from node v to node vi’ and w(pi) be the weight of path pi, 
then the weighted term frequency of term t in node v, denoted as 
tfw(v, t), is:  

( , ) ( ', ) ( )
1

m
tf v t tf v t w pw iii

= ∗∑
=

 

That is, the weighted term frequency of a term t in an XML node 
v is the sum of the frequencies of t in the text of vi

’ adjusted by the 
weight of the path from v to vi. The weight of a path is the product 
of the weights of all the nodes on the path, where the weight of a 
node is user configurable. 
Inverse element frequency. The inverse element frequency of a 
term t in an about function α, denoted as ief(t, α), is: 

1( , ) log
2

N
ief t

N
α =  

where N1 is the number of XML nodes that satisfy the path 
condition in the about function α, i.e., α.path; and N2 is the 
number of XML nodes that satisfy α.path and contain t in texts. 
Relevancy score function. The relevancy score of an XML node v 
to an about function α, denoted as score(v, α), is the sum of all 
the query terms’ weighted frequencies in node v adjusted by their 
corresponding inverse element frequencies. That is,  
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The extended vector space model is effective in measuring the 
relevancy scores of XML nodes to about functions in SCAS 
queries [8]. Relevant nodes to such about functions, however, 
usually are of relatively similar sizes because these nodes must 
satisfy the path conditions of the about functions. For example, 
all the relevant nodes to the about function about(//title, 
overview) are title nodes. This, however, may not be the 
case for the about function in a CO sub-query Qco. The path 
condition of the about function in Qco is a wildcard, which is so 
general that all XML nodes are exact matches to the path 
condition. Thus, nodes relevant to the about function in Qco are 
of varying sizes. The larger a node, the less specific it is to an 
about function. Thus, to compute the relevancy of an XML node 
v to an about function α either in a CO or a SCAS sub-query, we 
modify the score function in  (3) to: 

( , ) ( , )( , )
log ( ). 2

tf v t ief twscore v
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where wsize(v) is the weighted size of a node v. Given an XML 
node v, suppose v has r different child nodes v1, v2, .., vr. Let 
size(v) be the number of terms in the text in node v, then wsize( v) 
is recursively defined as follows: 

( ) ( ) ( ( ) ( ))
1

r
wsize v size v wsize v w vi ii
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That is, the weighted size of a node v is the text size of node v 
plus the sum of the weighted size of its child node vi adjusted by 
their corresponding weights. 

3.2.2 CO retrieval 
An XML node v is relevant to a CO sub-query Qco if either the 
text of v or that of any descendant node of v satisfies the content 
condition in Qco. For example, for the CO sub-query Q1co, the text 
of nodes 4, 9 and 18 satisfy the content condition, i.e., route 
planning. Thus, nodes 4, 9 and 18 as well as their ancestor 
nodes (i.e., nodes 1, 2, 5, 8, 10 and17) are relevant to Q1co. 
A CO sub-query Qco contains only one about function. Thus, the 
relevancy score of an XML node v to Qco, denoted as score (v, 
Qco), is the relevancy score of v to the about function in Qco, 
which can be calculated using (4). 
3.2.3 SCAS retrieval 
An XML node v is relevant to a SCAS sub-query Qscas if it 
strictly conforms to the structure conditions in Qscas and 
approximately satisfies the content conditions in Qscas. For 
example, nodes 1 and 10 in Figure 1 are relevant to Qscas. This is 
because both nodes strictly conform to the structure conditions: 
both are article nodes with a descendant node title. For 
example, node 1 has a descendant node title (i.e., node 3). Also 
both article nodes are about ‘intelligent transportation system’ 
and both title nodes are on ‘overview’. 
During query processing, if an XML node v is a match to a query 
node with an about function α, then the relevancy score of v to α 
is calculated using (4). The relevancy score of a SCAS result v to 
Qscas, denoted as score(v, Qscas), is the sum of all the relevancy 
scores of the corresponding nodes to the about functions in 
Qscas. For example, there are two about functions in Q1scas: 
α1: about(//article, intelligent transportation 
system) 
α2: about(//article//title, overview) 
The relevancy score of a SCAS result, say node 1 in Figure 1, to 
Q1scas is the relevancy score of node 1 to α1 plus the relevancy 
score of node 3 to α2. 

3.3 Combination 
After the retrieval step, we have two lists of results: one list of 
results from the CO retrieval, Rco, and another list of results from 
the SCAS retrieval, Rscas. Each result is a pair of (v, s), where v is 
an XML node and s is the score indicating the relevancy of v to a 
sub-query. For example, for the sample query Q1, we have two 
result lists, R1co and R1scas, one for each of its sub-queries. R1co = 
{(v4, s4), (v9, s9), (v18, s18), (v1, s1), (v2, s2), (v5, s5), (v8, s8), (v10, 
s10), (v17, s17)} and R1scas = {(v1, s1), (v10, s10)}, where vi denotes 
node i in Figure 1 and si is the score for vi.  
Results from the SCAS retrieval are answers to one part of the 
original query and results from the CO retrieval are approximate 
answers to the remaining part of the original query. Thus, results 
from both retrievals can be combined to produce approximate 

answers to the original query. To do so, we focus on results from 
the CO retrieval because they are the nodes “matching” the 
original query’s target. For each CO result vco, let vscas be a SCAS 
result such that vco and vscas are in the same document, then the 
relevancy of vco to a query Q, denoted as score(vco, Q), is: 

tscore( , ) = f( , p ) score( , ) + score( , )scasco co cov v v v∗ co scasQ (Q) Q Q  

where f(vco, Pt(Q)) is a target path similarity with a value between 
0 and 1 that measures how well an XML node vco satisfies the 
target path in Q, i.e., Pt(Q). 
For example, for the sample query Q1, node 4 in Figure 1 is a 
result for its CO sub-query Q1co. Node 1 in Figure 1 is a result for 
the SCAS sub-query Q1co, which is in the same document as Node 
1. Thus, the relevancy of node 4 (i.e., v4) to Q1 can be computed 
using (6). That is, score(v4, Q1) = f(v4, Pt(Q))*score (v4, Q1co) + 
score(v1, Q1scas) = f(v4, Pt(Q1))*s4 + s1, where s1 and s4 are 
computed using (4). 
The target path similarity, f(vco, Pt(Q)), is the key in the 
combination step. If the label path of an XML node vco is an 
exact match to Pt(Q), then f(vco, Pt(Q)) =1. It’s often the case that 
the label path of a CO retrieval result vco may not be an exact 
match to a query target path. In such cases, we compute the target 
path similarity for a CO retrieval result vco to be the maximum 
similarity between vco and an XML target node vt where vt is an 
exact match to Pt(Q), denoted as sim(vco, vt). That is,  

f ( , P ( )) max{sim( , ) | is an exact match to P ( )}t tv v v vco co t t=Q Q  

For example, the target path similarity for node 4 (i.e., v4) is the 
maximum of sim(v4 , v6) and sim(v4 , v8) since both nodes v6 and 
v8 match Q1’s target path  exactly.  
For a given query Q and an XML data tree D, there are usually 
many nodes in D whose label paths match the target path in Q 
exactly. For example, there are about 65470 different nodes in the 
INEX collection that exactly match the target path in Q1. Thus, to 
reduce computations, we cluster XML nodes in D with the same 
label paths into groups similar to DataGuides[7]. For example, 
Figure 2 is a group representation of the XML data tree in Figure 
1. Each rectangle represents a group with its identifier and label 
next to the rectangle. The numbers inside each rectangle are the 
identifiers of the nodes in Figure 1.  

In such a group representation, each group represents a unique 
label path in D. Thus, we can reduce the computations of (7) by 
measuring the target path similarity of a node vco to be the 
maximum similarity between the group which vco belongs to, gco, 
and a target group gt , i.e., a group whose label path is an exact 
match to Pt(Q). That is,  

Figure 2: A group representation of the XML tree in Figure 1. 
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f ( , P ( )) max{sim( , ) | is an exact match to P ( )}t tv g g gco co t t=Q Q  

For example, the target path similarity of node 4 (i.e., v4) is 
sim(g4, g6) since node v4 is inside group g4, and all the nodes that 
are exact matches to Pt (Q), i.e. node 6 and 8, are in group g6.  
In the following, we introduce two methods to compute group 
similarities by considering groups’ path and content aspects. 

3.3.1 Path similarity 
The similarity between a group gco and a target group gt, sim(gco, 
gt), can be computed based on the similarity between their 
corresponding label paths. Let  pgco and pgt

 be the label path of 

group gco and gt respectively. The greater number of common 
prefix nodes these two paths share, the more similar the two 
groups are.  Thus, sim(gco, gt) is:  

| p p |
sim( , )

| p | | p | | p p |
g gco tg gco t

g g g gco cot t

∩
=

+ − ∩
 

where | pgco ∩ pgt
| represents the number of common prefixing 

nodes between pgco and pgt
; | pgco | and | pgt

| denote the 

number of nodes on  the paths pgco and pgt
. The denominator in 

(9) is used for the normalization purpose such that sim(gco, gt) = 1 
when gco = gt. 

3.3.2 Content similarity 
For document-centric XML collections, the path similarity may 
not be very accurate in estimating group similarity. For example, 
given three paths p1: /article/body/section/title, p2: 
/article/body/section and p3: /article/body/section 
/paragraph, p1 is as similar to p2 as p3 to p2 according to (9). If a 
user is looking for a section regarding specific content, then 
according to (9), a title will have the same target path similarity 
as a paragraph. Compared to a title, a paragraph, however, 
is a better approximation for a section. This is because the 
content of a paragraph is much closer to that of a section than 
the content of a title to that of a section.  
This motivates us to measure the similarity between two groups 
based on their corresponding content. We describe the content of 
a group gi via a N-vector ig  = (tfi1, tfi2, …, tfiN), where N is the 
total number of distinct terms in an XML collection and tfik (1 ≤ k 
≤ N) represents the frequency of term tfik in group gi. With this 
vector representation of a group’s content, the content similarity 
between two groups, gco and gt, can be estimated via the cosine of 
their corresponding content vectors: 

sim( , )
g gco t

g gco t
g g g gco co t t

=  

For example, using (10), we find that the similarity between a 
section group and a section’s title group in the INEX 
document collection is 0.4196, while the similarity between the 
section group and a section’s paragraph group is 0.991.  

4. EXPERIMENTAL STUDIES 
4.1 Experimental Dataset 
We use the INEX 04 dataset and all the 33 VCAS queries to 
evaluate the effectiveness of our VCAS retrieval methodology. 
The INEX 04 dataset, around 500MByte in size, consists of over 
12,000 computer science articles from 21 IEEE Computer Society 
journals. The documents are marked with about 170 different 
tags. A document contains 1532 elements on average and an 
element has an average depth of 6.9.  
4.2 Test Runs 
The following four runs are used to study the effectiveness of our 
VCAS retrieval methodology. All the experiments use the same 
node weight configurations: uniform weights. That is,  w(v) =1 for 
any node v in the dataset.  

• CO run. In this run, we ignore the structure conditions in a 
query and use the query’s content conditions to perform CO 
retrieval. This run is used as the baseline for testing the 
effectiveness of our VCAS retrieval methodology. 

• VCAS-1 run. In this run, we perform the VCAS retrieval with 
f=1 for all results. The run is used as a base line to compare the 
effectiveness of the path similarity and content similarity metric. 

• VCAS-path run. In this run, we perform the VCAS retrieval 
using the path similarity in (8) as the target path similarity. 

• VCAS-cont run. In this run, we perform the VCAS retrieval 
using the content similarity in (9) as the target path similarity. 

4.3 Result Evaluation and Analysis 
To evaluate the relevancy of an XML document component to a 
query topic, the relevance assessment working group in INEX has 
proposed a two-dimension relevancy metric (exhaustiveness, 
specificity). Exhaustiveness measures the extent to which the 
document component discusses the topic of request and specificity 
measures the extent to which the document component focuses on 
the topic of request. This two-dimension metric is then quantized 
to a single relevancy value between 0 and 1. In this paper, we use 
two of the most frequently used quantization methods: strict and 
generalized. A relevancy value is either 0 or 1 with a strict 
quantization; while it could be 0, 0.25, 0.5, 0.75 or 1 with a 
generalized quantization. 
In our experiments, we use the INEX relevance assessment set 
version 3.0 and compute each run’s mean average precision 
(MAP) using INEX on-line evaluation tools. Table 1 presents 
mean average precisions over all of the 33 query topics using both 
strict and generalized quantization methods. The corresponding 
ranks compared to all the 51 official submissions returned by 
other INEX participating systems are also included. 
 

Strict Generalized Run MAP Rank MAP Rank 
CO 0.064 11 0.0716 7 

VCAS-1 
0.0844 

(+31.88%) 
5 0.0878 

(+22.63%) 
5 

VCAS-path 
0.0886 

(+38.44%) 
4 0.0887 

(+23.88%) 
5 

VCAS-cont 
0.0946 

(+47.81%) 
4 0.094 

(+31.28%) 
5 

Table 1: Results over all the 33 VCAS topics in INEX 04.

 (8) 

 (9) 

 (10)



From Table 1, we note that our VCAS retrieval approach 
significantly outperforms the CO approach. The VCAS-1 run 
outperforms the CO run by 31.88% using the strict quantization 
metric. This is because the CO approach ignores XML structures 
for simplicity but loses the precision benefit provided by XML 
structures. Further, by comparing the VCAS-1 run with the VCAS-
path and VCAS-cont runs, we note that similarity measures further 
improve our VCAS retrieval precisions. Also, the content 
similarity provides more precision improvement than the path 
similarity for the INEX VCAS retrieval task. We note that the 
mean average precisions of our VCAS retrieval approach are 
relatively high compared to all the 51 official INEX submissions. 
For example, the mean average precision of the VCAS-cont run 
ranks top 4 (5) using the strict (generalized) quantization method. 
We have also observed similar results using other quantization 
methods.  

5. RELATED WORKS 
There is a large body of work on XML information retrieval 
(e.g.,[3-6, 8-13]), most of which focuses on effective XML CO 
retrieval and SCAS retrieval. For example, Sigurbjörnsson et al 
propose a general methodology for processing content-oriented 
XPath queries [11]. The key difference between [11] and our 
methodology is that: [11] focuses on extending IR engines 
designed for CO retrieval to support SCAS retrieval; while our 
methodology extends XML engines designed for CO and SCAS 
retrievals to support VCAS retrieval. 
XML VCAS retrieval is a new task in INEX 04. Many teams 
within the INEX initiative conducted VCAS retrievals by 
ignoring the query structure conditions (e.g., [12]). In [9], S. Geva 
proposed a VCAS retrieval approach by decomposing a query 
into multiple sub-queries, where each sub-query contains one 
structure filter and one content filter. An XML element is a result 
for a sub-query if it satisfies the content filter, but does not 
necessarily have to satisfy the structure filter. Results from 
different sub-queries are merged and sorted by the number of 
filters they satisfy. This approach is simple and effective. Our 
work differs [9] in two aspects: the query decomposition 
strategies are different; and two similarity metrics are proposed to 
measure the relevancy of a VCAS result to a query target path for 
improving retrieval precision. No such measure is used in [9].  
Query relaxation is also related with XML VCAS retrieval. S. 
Amer-Yahia et al have some seminal studies on XML query 
relaxation in [1, 2]. They model a XML query as a tree and relax 
node and/or edge constraints on the query tree to derive 
approximate answers. Algorithms have been proposed to 
efficiently derive top-k approximate answers. Our work differs 
from [1, 2] in that while they focus more on the efficiency aspect,  
we focus on the effectiveness (i.e., retrieval precision) aspect.  

6. CONCLUSION 
In this paper, we propose an approach for processing XML vague 
content and structure (VCAS) retrieval. A content and structure 
(CAS) query consists of two parts, i.e., support and target, where 
each part contains both path and content conditions. To derive 
approximate answers to a query, we decompose a query into two 
sub-queries: one sub-query consisting of support path and content 
conditions (a SCAS sub-query) and another sub-query consisting 
of the target content condition (a CO sub-query). We then process 
the SCAS sub-query by SCAS retrieval and the CO sub-query by 

CO retrieval. Results from both retrievals are combined to 
produce approximate results to the original query. To improve 
retrieval precision, we adjust the score of a CO retrieval result by 
the relevancy of the result to the target path condition of the 
original query, which is measured by target path similarity. We 
propose a path similarity and a content similarity metric to 
compute the target path similarity. We evaluate our VCAS 
retrieval approach and the similarity metrics through extensive 
experiments on the INEX 04 dataset and all the 33 VCAS queries. 
Our experimental results demonstrated that: 1) our VCAS 
retrieval approach, by taking advantage of XML structures, 
significantly outperforms the content-only approach; and 2) the 
path and content similarity metrics are effective in estimating the 
relevance of CO sub-query results to a query target path 
constraint.  Therefore, they can be used to further improve the 
accuracy of the ranking of the retrieved results. 
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