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Abstract
Seweral indexing techniqueshawe beenprgposedto proesssimilarity queiesin seqence daabases. Mosof
themfocus am finding similar seqences of the sane lengh using the Eutideandistarnce metric. However, in
sone applicaions where the dements & sequerces nay be sarpled a different rates, the tine warping
distane is a nore sttable smilarity measure. i this pape, we propcse a indexng techrique basd on a
suffix treefor fad retrieval of similar subsequenes nde time warping. The sarch dgorithm for a suffix
tree is exended D provide smilarity seaches, ad the cortep of caegorization is goplied to reduce index
size andto accderate quay proessng. A greate reducion of index sze is achieved usng a spase suffix
tree and more speedup isattained bythe fast egimation of the time warpng disanes ketween nonstored
suffixes and a qiery seqence. Our method guaraniees o false dsmissak snce the adud time warping
distanesare always lower-boundin the index spae. Ou acces nmethod ca dso beuseal to answe shape-
basedqueiies snce appoximate shapsof subsequenes aramaintained in the indexspace. Experiments on

stockandattificial sequercesshowthat our appoachis abot 4 timesfaster than segential sanring with a
relatively small index space,andthe gerformance @ins increaseup b 20times aghesize of indexes gows.

1. INTRODUCTION
Similarity seachesin sequerce daabases are important in many application domains, sich & information retrieval,
data nining andclustering. Deteting stoclks that have similar growth petterns and finding paients who® lungtumors
hawe similar ewlution fashions are afew exanples d similarity queres. Seqenia scannng is the smple method for
answveling those qteries, it it may requre an enamous proessng time ower large seqence daabases.Recenty,
seeralindexing technques [1,2,4,1Q hawe been popo%d b proces smilarity queies nore quckly.

Most of the prevous technques [1,2,4] on smilarity seaches sethe Euwclidean distance netric asa similarity
measureandapgy the llowing ideas. extractfeatures fom sequencg map theminto nulti-dimensional wints and
let spaial access nethods menage the napped pomts. Ths idea @n be exended to similarity matching of sub-

sequenes.However, it is na feasgble to build spatial indexes fom all subsequencesnce trereare O(MININ) sib-



sequepesin M seguerceswith an aerag lengh N. This problem is addesedin [2] assuning knowledge of the
minimum querylengh.

In some appliations, like the natching of voice, audo, ard medicd signals, where the elements ofsequences
may be samled at dfferent rates, he time warping distance [6,11] is a more sutable similarity measurethan the
Euclideandistance metric. Under time wargng, oneelementof a sequerce can be matchedto oneor more elementsof
another sequace. So, two rmatching seqences are nd required to have the same lengh. As an exanple [7], let us
conster two squencesS = <20, 20, 2121, 20, 20, 23, 23> and§ = <20, 21,20, 23> whee the squerce Sis the
closing price of a stock taken every day and § is the clodng price of arpther stock taken every other day. § and $
canna beconpared drectly becasethe quence Sis longer han §. The Eudideandistarnce between § and anysub-
sequene d length four of S is geaerthan 1.41. Howeer, if we dupicake ewery value d the sequene § usng a ime
warp, we find that the tvo sequerces are ideticd.

In matching similar sequences, it is important to prevent the occurenceof false dsmissds. It is sad that false
dismissds occur when a £querce smilar to a quey sequace isnot incdudedin an arswer-set. One importan
propety of a time warping distarceis that it does na sdisfy the riangle inequdity [4]. If a time warping distanceis
used & a smilarity measure, dlthe spatal acces methods aswell as all the methodsusng distarce/metric/ivantage-
point trees camot awid false dsmissds. This is based a the fact that any indexng technique assuning the tiange
inequality implicitly or explicitly camotawid produdng false dsmissds when he dstane function dssatsfying the
triande inequality is usedas admilarity measure4].

In same other aplications, the shaps of the subsequenes aremore importart than the aatal eement values.
The shgesarepresened ewenif every elenent \alue is scded a shfted by a sare anount. Findng subsequence
tha hawe monotontaly incressing paterns and finding subsequenes hat show “godpog fever” paterrs are two
exanples of shge-basedquaies[9,1(. “Godpog fever” [9] is one d the symptoms of Hodghkin's diseae tha
behaesastwo conseutive fevers during a 24 har period. It is nd easyto answer shag-based queesif the acess
methods do nbpreseve theinformation abait the shape of the sguenes.

In this pape, we propcse a ew indexng technque, which guarariees nofalse dismissals, for fast similarity

retrieval of timewarpedsubsequence A suffix tree [12] is ued & anindex dructure and its seach algorithm is



exterded to swppott similarity searches. The cacep of caegorization is apgied to reduce the indx size. Using
categrization, we first convert sequen@sinto their caegorized regesntions andthencorstrud a ategorized sufix
tree from the conerted seqeences. To preventthe occurence of fdse dismissds unde time warping we define the
distane function Dp.warp() for conputing the bwer-bound tme warping disarnces betwencategorized sequerces and
aquey sequene. We furtherreduce the size of a affix tree ugng a sp@are sufix tree [13] tha gores only a subst o
suffixes whose first values ae dfferert from ther immediate pecaling elements.During query procesing, the non-
stored siffixes are detected rom the sored sdfixes and thé lower-bound time warping distances from a query
sequene ae calculated quckly by D’ p.wap(). As the lower-boundtime wargng distanc functions ae ugd n the
index spae, the sequencesdissimilar to a query seaqien@ may not be fitered od. These gquercesare cdled false
alarms False darms are detcted anddiscarded diring postprocesing

Our acess method may also be usd b ansver dapebased geries since the apmximate shaps of sub-
sequenes are maintained in the index spae. During quey procesing, we can trace the changng paterns d
categrized \aluesto locate the subsequenes faving similar shags b agiven queryshape. he step for de¢cing and
disardngfalsealamsis dso reeced $nceonly apgoximate shapsare naintainedin the indexspae.

This paper is organized as fdlows. Background and elated works are de<ribedin section 2. In secton 3, the
method to ug a siffix tree br similarity seach is illustrated. Sction 4 presets categorization techniques to redae

indexsize ard tospesd-up queryprocessing. Expermentalresults ae gven insedion 5.

2. BACKGROUND AND RELATED WORKS

Let usfirst desciibe the basts of time warping and asuffix tree.Table 1lists sorre synmbols usedn this payer.

Symbols Definitions

<> enpty sequence

Len(S) lengh o the sguene S

Sip] p" elenent of he :querce $

S[p:q] subsequencefaS, includingeementsin postions p throud q
Sp:-] subsequencefoS, includingdementsin postions p throudh the erd

Table 1: Symbols usedn this pager



2.1 Timewarping

Time warping allows ore denment ofa seuerce b be natched to one @ more ebmentsof a targt sequence with
redrictions [11] like monotoncity, contnuity, boundiry condtions,and waping window. The time warpng distane
is sutable for gpplications, Ike the nmetching of voice, aidio and nedical signals (glectrocadiograns), wherethe

elenents ¢ sequerces nay be sarpled 4 different rates.

Definition 1 Given any two nonsull sequerces $and § thetime warping distance Dyap(), is ddined & follows [6].

Dwap(<>, <>) =0.
Dwarp(s, <>) = warp(<>, S) =00
Duen(S,S) = Doas(SIL], [ + min Duen(S, §2: + Duen(S[2:3. S) *+ Den(S[2:1, S[2:D)

Doae(S[1], S[1]) = [S[1] - S[1] |
Duase() ONtwo nuneric values can be ay of the distancefunctions,but weassime thatit is defined asthe cty-block
distan@. Dwap(S, §) canbe calkulated dficienty by the dyamc progamming techniqe baed m the reeurerce

relation y(X, y).

Definition 2 Given any two nonnull sequerces $and § the recarencerelation y(x, y) (x =1,2,...,len(S), y=1,2,
...,Len(§)) which calkulates he wmulative ime warping distance béweenelementsof S and $is deined as follows
[11].

¥(0,0 =0

Y(x, 0) =Y(0, y) =

Y(X, ¥) = Doag(S[X], Sily]) + min (y(x, y-1), y(x-1,y), y(x-1,y-1))
The dynamic progamming algorithm [11] fills in thetade d cunulative dstances asthe computaion praceeds The
final cumulative dstane, y(Len(S), Len(S)), isthe desired dstane beween $and $ and the mnimum matchingcan
be racal bakward in the tade —choasing the previous @&lls with the lowest cumulative distance This conputaion
has he conplexity O(Len(S) OLen(S)).
2.2 Suffix Tree

A suffix tree [12] is an index gructuretha has been popo%d & afag aces nethod b locake substrings (or sub-

sequeney that exactly match a quey stiing (or a quey sequene). A sufix is a sib-sequence thaendswith the las



elenent d a fquerce,and aprdix is a sib-sequenceha garts with the first denment of a £querce. In a sequence
whose éngth is N, thereare N sufixesand Nprefixes.

Like anyothertree, asufix tree corsists ofnodes andedges. The lebnodesare labded with the idenifiers of the
sequenes and the stiing postions of thesuffixes thathey represen. The internd nodesN; of the tree ae of degee=
2 (with the excepion of theroat of a trivial suffix-treg, ard represen the longest conmon prefkes d the siffixes
represated by theled nodes urder N. The subsequenesregesntd by any node ¢ the tree nay be obtined by
concaemating labds assaiated with the ed@s a the unique math from the roa to the paticular nodein quedion.
Therefore, the sufixes are oldained by concadending the Bbds assaiated with the edgeson thepahs fromroot to
leef. We usethe symbol Edg(N;, N;) for the ede conneding the nale N(paren) to the rode N(child). A suffix tree
canbe contructed with complexity O(M [ON), where M is the nunber d seqienes ad Nis the awerag length of the
sequenes.Thetotal number of noesin thetree is condrained die © two fads: there ae QM [IN) lead nodes and the
degee ofanyinternal nodeis a least 2. Thetefore, the maximum number of nodes and oweral space regirenment of
thesuffix tree islinear in MON [12].

Example 1 We consider two sequercesS, = <4,5, 6, 7, 6 6>and S =<4, 6, 7,8>. The corstructed suffix tree b

shown in Hgure 1.Weuse he symbol ‘$’ astheend nark of the sufixes

(S11) (S1.4)

(S2:3)

(S21)  (S12) (S1.6) (S1.5)

N 10

(S13) (S22

Figure 1: Sufix Tree from S;=<4, 5, § 7, 6,6>amd S,=<4, 6, 7,8>



The algorithm to locae subsequencethat exactly match a query seqien@ Q is given in Figure 2. This dgorithm

stats fromthe roa ard quckly progesse through the reewith conplexity O(Len(Q).

Algorithm: ExadSeach(CurNode)
Begin
0 Visit the noa, QurNode.
o Seletthe dild node, ChildNode, whoe asodated bbd matches a pefix of Q.
o Renovethe natched pefix from Q.
o If Qbecones enpty,
tren epott dl leaf nadesunda ChildNodeasanswes,
eke @l ExactSeach(ChildNode).
End

Figure 2:Exad SearchAlgorithm for asuffix tree
2.3 Related Works
Sevweral appraches br fad retrieval of similar sejuerces lave reently beenproposd. In [1], seqences of thetime
domain areconwerted into sequences of the frequency dommin bythe Oscrete Fourier Trangorm and ae sulsequently
mapped into rolti-dimensional mintstha are menaged by the Ritree. h[2], the techrique of [1] is extnded to loate
similar subsequenes.Assumring the minimum querylengh Wis known in adwance,feaures ae extradedfrom every
subsequence fosze W and are rgppedinto multi-dimensionalpoints. The nmapped pints are represented by thar
minimum boundingrectanges. Beausethe appoachesof [1] and[2] do not pamit the time warpng of elements, the
sequenes wth different sampling rates @n na be natched.

Sequene matching that alows transformations of seqien@sare propcsedin [5] and [7]. In [5], thesequaces are
grouped ino auivalent clases @&coding to shag-based @mndormations sich as saling and shifting, and are
reptesated by thar normal forms from which the indexes ae bult. Howeer, the namal forms do notconsder the
time warping of elements. h [7], authors propcsed aclassof transformations that canbe usedin a query language to
express s$milarity. The trangormations include noving awerage, time warping and reversing. They implement
similarity matchingunde thosetrangormations a top of an Rtree ndex. $nce the Riree ndexis basel on triangular
inequality, they may generat false dsnissak unckrtime warping.

The acessmethods ¢ [4] and [10 pemit the metching of sequeces d different lenghs. In [10], they usea

modified version of edit distanceand ©nsder two sequaces matching if a ngjority of elenentsin the seqences



match. For éficient retrieval of matching sequenes,they first group dat sequerces bylength andthen index the
groups byvp-trees (antge poirt trees). Fowever, they may generae false dsmssds under anonimetric edt distarce
fundtion. In [4], they use d@ime warping digane asa similarity measureThe filtering proces corsists of two steps:
FasMap index filter and lower-boundingdistancefilter. Lowerboundingdigarce flter is used toquickly discad
many falsealarms tha FagMap [3] introdwces. Mte tha ther gpproachis dsobasel on tiangular inequality. So, they
can na guarariee no flse dsmssds.

Similarity matching basel on shapes of seqeencesis propoed n [8] and [9]. In [9], they pre®ent a stape
definition language, caled SOL for retrieving sequenes baed on thér shags. SDL is alle to perform a “blurry”
match where theuser caresabou the overdl shagsbut doesnot care abou the spedfic values.They provide anindex
structure for speeding up theexewtion of SDL queies. h [8], the aithors introduce the notion of generlized
approdmate geriestha speify the gnera shges ¢ data histories withou degending on speific values.To support

thosequeies,theybreak sequenesinto meanindul subsequenceandrepresert themas nathematical functions.

3. SIMILARITY SEARCH ON A SUFFIX TREE
The prablem we aretrying to solve is formally defned & Given M seqien@sS,, S, ..., & of arbitrary lenghs, a
querysequence Qanda user given threshdd & we wan to find sib-sequencesS[p:q] (i = 1, 2, ... M) who ime
warping distancesfrom Q are lessthan or equd to &.

Our proposedsdution to the almve prolblem uses asuffix treeas anindex gructure. We congruct a sufix tree
from the sufixes of all daa sequences in daabaesusing the dassical condruction dgorithm [12]. Our sSmilarity
seach dgorithm for finding time-warped subsequencess ba®d onthe exa¢ search dgorithm defined in Figure 2.
Howewer, the exat seach dgorithm can notbe directly appled to our problem domain since it is basd on exad
matchingand dos nd allow thetime warpng of elements.The modified search algorithm is gven in Figure 3. Fom
theroot, it traveresthe sffix tree sing a depgh-first downward traversd appoach. When itvisits a node, it insggds
each aild nock © find newanswers and o deternine whether further going-down is neaded. This ingpedion proces

conssts of building and checing the curnulative distancetale.



Algorithm SimilaritySearchen-Suffix Tree(CurNode, QirTalde)
Begin
o Visit the nock, QurNode.
a For ezh chld node ChidNode,of CuNode, @ the following.
= Using the recurencerelation y(x, y), consgructa newcunulative disgane table, Newl'ale, on top of CurTale
for aquey sequene and thelabd assodated wih theedge, Edge(CurNode, CHdNode).
= Find newanswers byinspeting the bst cdumns of NewTale and irset theminto the ansver-set.
= Determine whether we needto go further down by checling all cdumns of the lastrow of NewTale.
= |f further visit is required, cdl Similarity Search-on-Suffix Tree (GildNode, NewTale).

Figure 3:Similarity seach dgorithm for a siffix tree
Let us asame that the se&h algrithm visits thenode,N;. The first step is to build a cunulative distarce table for a
queryseqgence Q andthe labd assaiated with the ed@ panting to each dild nodeof N. If N; is a root nodethe
curmulative dstancetable is built from the botom. Otherwise, it isbuilt by augnenting new rows on thecurrent
cunulative distancetable tha has ben acunulated from the root to N;. As the labds asseiated with edges ae
locaed on Y-axis anda querysequerce Qon X-axis, the cunulative dstane table beomes taler asthe searches
proced toleaf nods.

The nex gepis to exanine thelast columns of newy adda& rows of the cumulative distane table to find new
ansvers. I thelag cdumn of the K" row hasa alue less han @ equal to the user-given threstold €, the prefix of
lengh k from thelabel of Y-axis isinsetedinto the arswerset. The find step is tocheckall cdumns of the lastrow to
detemine wheheror nd further going-down is neded. F atleast one cdumn of the last row has a aue less thanor
equalto g, we cortinue down thetreeto find more arswers. Gherwise,the seach noves tothe nex child noce of N;.

This branchpruning processis basedon Theaem 1.

Theorem 1 If all columns of tre last row of the cumulative distance talle have values geaer than ause-given
threshdd €, addng more rows to this tade dbes rot yield any newansvers.

Proof The pioofis shown inapgendix A.

Example 2 For a siffix tree siown inFigure 1,a gery seqenceQ =<3, 4, 4> ande = 2, we first visit theroat noce

N; and chek each ciid nock of Ni. To insped the nodeN,, we bild the cumulative digance tble havng one pw by




locaing the bBbd of Edge(N;, N,) on Y-axis and Qon X-axis,andfilling thecels of therow with the cumulative time
warping distances. As the las cdumn of the first row has the value 1, which is smaller thang, the labd <4> of Y-axis
is insated nto the ansver-set. The sarch ontnues © cheek the nale N; since there are columns of the first row
having the \aluesnot geater €. The five new eements coresponihg to thelabel of Edge(N,, Ns) are locdedon topof
thefirst element of Y-axis, ard thenfive new rows are filled with the cunulative time warping digarces. A the last
columm of the sscondrow has the value 2, which is equa to €, <4,5> isinseted into the answer-set.Evenif there are
children noces uné@r N;, the arch daes ot continue down s$nce al columns of the lasrow hawe the values larger
thane. Thus, the seach mntnues tochek the no@& N,. Table 2 shows the curnlative distance table when thesearch

algorithm checls thenode N.

row 6—| 6 16 11 11
row 5- 6 13 9 9
row 4—| 7 10 7 7
row 3—| 6 6 4 4
row 2—| 5 3 2 2
row 1- 4 1 1 1
3 4 4

Table 2: Cumulative distancetalde for a quey sequace Q=3, 4, 4 andthe lebel <4, 5,6, 7, 6,6>
on thepah from N; to N; of the sufix treeof Fgure 1
The similarity seach algorithm defined in Figure 3 eecues fader than ®quential scanning due to the shaed
cunulative distancetables and thebranchpruningproces. This paformanceincreagsas the nunber of common sub-

sequenes gows.

4. CATEGORIZATION

In this sedion, we shall introdue the cancept of caegorization asa means ofredweing the index $ze andacelerating
queryproessng. To caegorize element \alues, ve divide theranges d denment values into sub+ranges. Each du
range is repreenid by a smple identifier cdled the category-id, and eachelement \alue is represeted by its

correspading caegory-id. Thus,theseqences of valuesarecon\ertedinto the sguenes d category-ids.



4.1 Categorization Methods

We slall nowintrodwuce tree cdegorization methods.

4.1.1 Equal-L ength-Interval Categorization

As the rame implies, dl the cdegories tave equd interval length (MAX-MIN) / N, where MIN is a ninimum value of
sequenes,andMAX is a meximum value of seqeences, ard N is the nunber d cakegories. This caegorization is
simple andfad, but it loses nformation o the seuencs becase it ignoresvaue or frequency digribution of the
sequenes.

4.1.2 Maximum-Entropy Categorization

The ertropy [14] of cdegporization isdefinedas H (C) = 2 P(Ci)logp(Ci) WhereP(C) is the probablity that
an ekment isincluded in thei" cate@ry. To minimize the II:oss d information for the seqences, maximum-entropy
categrization decidesthe baindaies d caegoriestha generte maximum entropyvalue. The baindaies @n be
detemined eaily by making all ategoriesinclude the sane nunber ofelenents( P(G) = P(Cy) =... = ACy\.) ).

4.1.3 Minimum-Cut Categorization

Given two cdegories G, and G, if two values<V|,, V;> sdisfies te condtion V;, O C.; and I G, thenwe sa the
values ae ait by the boundey of G_; and G. Then,total nunmberof cuts d the cdegorization C isdefined asfollows.
T(C) = S CUTS (Ci-1,Ci) where CUTS(Ci4, C) is the nunber ofcuts made by the bounday between ceegory
Ci1 and (I:;tegry GCi. To maximize the totl number of conmon subsequencg this method determines the category
boundaies that generate the mnimum number of tdal cuts.

4.2 Suffix Treewith Categorization

After cdegorizing the dement \alues of the sequences, we convert the sequence of numbers irto a seqeence of
cate@ry-ids. We @n then buld a siffix tree baedon the cdegorized seqences. We call this suffix tree the
categrizedsufix tree (CST) The categorized sufix treeis corstructed sing the sane consruction algorithm of the

suffix tree bu the ed@s row represert the cdegorized subsequenes. h general,a cdegorized sufix tree hasmore

conmon ed@s than amriginal suffix tree hercethetree is smaller and the gery proessng is fager.



Example 3 Threecakegriesare produed fom S;= <4, 5,6, 7, 6,6> ard S =<4, 6, 7 8> wsing the maximum-entrogy
categrization. The range of each ategory is shownin Talde 3. According to this categorization, S; ard S are
conwertal to ther caegorized repesenttions,CS = <Cy,, C, G, G, G, C> and C$ = <C,, C,, G, G>. Note that

CS, and C$ hawe more conmon subsequencgthanthos includedin S; andsS,.

Caegory MIN MAX
C 4 5
G 6 6
GCs 7 8

Table 3: Minimum and naximum value of e&h ategory producedby maximum-entropycate@rization
fromS; = <4,5,6,76,6>and $ =<4,6,78>

The simlarity seach algorithm definedin Figure 3 needsto be nodified to rdlect the caegorized repesentaton of
sequenes.First, the recurrercerelation y(x, y) is changed to the lowe-boundrecurence réation y(X, y) to corstruct
a lowe-bound cunilative dstancetable for a qiery seqenceanda cdegorized subsequenceAnd, postprocesingis
addedat thefinal stag to discad false darms. Note that the adud dement values of the quay sequene s ued D
conputey(). Thelowerbound ime warpingdigtarnce fundion Dp.wap() and ts corregpondng lowerbound reurerce

relation y,() are definedas bllows.

Definition 3 Given any two nonnull sequerces $and $ the dstance function Dy.wap() thatreturns the lower-bound

time warping disiancebeween $and $is defined asfollows.

Dib-warp(<>, <) =0.
le-warp(CSv <>) = le-warp(<>1 S) =
Dib-wap(CS:, §) = Divase(CS[1], S§[1]) +
MmN (Dip-wap(CS;, §[2:-]), Db-wap(CS[2:-], §), Dibwarp(CS[2:-],5[2:-]))
Dib-bae(CS[X], Sly]) =0 (if Sly] isincluded n CS[x])

= Sly] - MAX(CSIX]) (if S[y] is larger than MAX(CS[X]))

= MIN(CS[X]) - Sly] (if Sly] is smaller than MIN(CS[x]))
As S[x] is represented by CS[x], the exad distane between gx] and S[y] can na be conputed.As alower-bound
distan®, we u® Dpuase(CS[X],Sjly]) that returns the mssble minimum distarce between S[x] and §ly]. This is

shown in Fgure 4.Here,CS[x] represnts the ategory-id in which thex" elerrent ofthe ®quence Sisincluded



Sly]
MAX(CSIx]) MAX(CS[x]) 1T MAX(CS[x])
* Sly]
MIN(CS[x])) —L— MIN(CS[x])) —— MIN(CS|[x])
* Sly]
possble minimum possble minimum possble mnimum
distance=0 distance = §[y] - MAX(CS|[Xx]) distance = MIN(CS[x]) — Sy]

Figure 4:Posshle mnimum distance btween C§[x] and §[y]
Definition 4 Given any two nonnull sequerces $and § the recurence ré&tion yip(X, y) (x = 1,2....LenS), y =
1,2,...,LentS)) thatcalculates thelowerbound curnlative distancesDip.wap() iS ddined & follows.
Y(0,0) =0
YIb(X, O) :Y|b(0!y) =
Yio(X, ¥) = Dib-base(CS[X], Si[y]) + min (yin(X, y-1), ¥is(X-1,Y), Yio(x-1, y-1))

Theorem 2 For anytwo nonnull seqencesS and $ thefollowing inequality holds.

le-base(CS[X]! Sj[y]) B Dbase(S[X]! %[y]) (X :112! ’Len(S)v y= 17 21 T Len(s))

Proof The pioofis shown inappendix B.

Theorem 3 For anytwo nonnull seqences § and $ thefollowing inequality holds.

Dib-wap(CS, §) < Dwan(S, )

Proof The pioofis shown inapgendix C.

By Theoem 3, we can garartee tha ou smilarity search algorithm basedon Dy,.wap() doesnot generate false
dismissds. However, the subsequenes whose tme warping distances ae larger thane may be includé in the

ansverset.They are atected anddiscaded diring postprocesing

Example 4 Using the categorization definedin Exanple 3,we corstrud the lowerbound cumlative disarce tade
correspanding to the cunulative digarcetade slown in Table 2. Y-axis nowrepresentsthe caegory-ids of the edgs

of the cdaegorized sufix tree.Thelowerbound ime warpingdigarncesof Table 4 ae mmputed us1g Yis().



row 6— C, 13 9 9
row 5—| Cy 10 7 7
row 4—| Cs 7 5 5
row 3— C, 3 2 2
row 2— C 0 0 0
row 1- C 0 0 0

3 4 4

Table 4: Lowe-bound curnlative digane table for a glery seaiene Q = 38,4,4> adthe @tegorized labd
<C,,C;,GC,,G3,C,,Co> correspnding to the labd on Y-axis ofthe cunulative digarcetade o Table 2

4.3 Spar se Suffix Treewith Categorization

A suffix tree that stares only a sibse of suffixesis cdled a sparse sufix tree [13]. Sncethe siz of the sufix tree is
linear with respet to the nunber of leaves, the spare sufix tree is snmaller than an origina sufix tree We cdl
suffixes insated into a tree stored-sufixes, andsuffixes rot inserted inb a tree non-stoed sufixes. In this work, we
insat only sufixes whosefirst valuesare different from values d their immediate pecaling elements. That is, S[p:-]
is insated nto a sufix tree only if S[p] # S[p-1]. We cdl aspasesuffix tree ondructed from categrized seqances

a cakgorized spasesufix tree CSST)

Example 5 In Exanple 3, S and $ are trarsformed to their caegorized representations, CS, = <C,, C;, G, G;, G,
C> and C$ = <C, C,, G, G>, respecively. Our caegorized spaise suffix tree staesonly 7 sufixes (CSy[1:-],

CS|[3:-], CS [4:-], CSy[5:-], CS,[1:-], CSy[2:-], and CY3]) from 10 sufixes.

The similarity seaich algorithm for acaegorized aiffix tree @n dso ke used ona spase sufix tree  However, if we
use hat algorithm without modificaion, we nay miss qualfied subsequenes included in nonstored suixes.
Therefore, we lave to find and pocess nan-stored sffixes duing tree traversd. Non-storal sufixes can be found
easly from thestaedsuffixes. Ater finding all the non-storel sufixes,usng D’ jp.wap(), We conpute tle lowe-bound

time warpng distancebeéweena quey sequene and thosenonstoredsuffixes.

Definition 5 For anytwo nan-null sequenes Sand § if the first N dementsof CS hawe sane velue, then thelistance
fundion D’ pwap(CS[k:-], §) (k = 2,3,...,N)thatreturns the lowerbound disance d Dpwap(CS[K:-], §) is ddinedas

follows D’ b-warp(CS[K:-1, §) = Dip-warp(CS;, §) — (k-1) O Dipase( CS[1], S[11])



If we know the value of Dy.wap(CS;, §), thenD’ h.wap(CS[k:-], §) can beconputed nuch faste than the straight

conputaton of Dpwap(CS[K:-], §).

Theorem 4 For any two nonnull seqences S and § if the first N dements ¢ CS hawe the sime value, the the
following inequdity holds

D’ bwap(CSIK:], S) < Dparp(CS[K:-], S) < Duap(SIk:], §) fork=2,3, ..., N
Proof The pioofis shown inapgendix D.
4.4 Post-Processing
Sincethe lower-bound disance functions, Di.wap() and Dpwap(), are sedin our search, the unouaified answers
whose itme warping distances ae larger thana ugr-given threkold € may beincludedin the arswerset. During pos-
processing, the atual subsequenes carespamding to answers in the answerset ae retrieved and the time warping
distan@esfrom a queryseqien® ae alculated Tho® subsequeneswhose actual time warping distanes are leger

thane arerenoved fromthe answr-set.

5. Experiments

To study the peformance improvenments of owr proposel smilarity serch algorithms, we peformed seeral
expeiments on541 gock histay dataextracted from S&P 500stock dat (http:/biz.swcp.@nvstocks/) and onthe
artificial data squerces.The gock daa ae basal onthe dosng pricesof stacks on each day, and the agrage lengh
of themis 232. The expession for generting the atificial sequenesis definedas: S[p] = S[p-1] + Z, where Z (p =
1, 2, ...) are indepander, idertically digributed mndom variables. The nunber d andthe avwerag length of the
artficial seqien@svary accading to each expeliment. Weextract 2 quey sequenesfrom the stacks whose aerage
pricesarebelow $30, 5 gery sequen@sfrom the socks who® aerag [ricesare between $30and$60, ard 3 query
sequenesfrom the other socks. The 10 qery seqences are extraded from the attificial sequercesin a similar
manner.The averag length o the quey sequenesfrom both the sbck sequaces andthe attificia sequercesis 20.
All expeiiments exep for scalalility testing in section 53 are peformedon both the stock sequences and tle attifi cial

sequenes.The dort naations usked inthis sedion ale sunmarized in Table 5.



Symbols Definitions
SS Sequertial Scanring
CST Cateqorized Suffix Tree
CSST Categorized Sparse Sufix Tree
CSSTN) | Categrized Smare Sufix Tree haing N caegries

EL Categrization Method asel on Eqal-Lengh Interval
ME Categrization Method kasel onMaximum-Entropy
MC Categrization Method asel onMinimum-Cut

Table5: Naations used in the ex@riments

5.1 Index Size and Query Processing Time with Increasing Number of Categories

Table 6 showsthe averag queay procesing time (whene is 30) andsize of various suffix trees hilt from the stack
sequenes.On the whole, asthe number of categories increa®s, thesearches become faser at the casof bigger index
space However quey processing becones slover whenthe nunber of caegoriesexcealsa cetain limit, which varies
accading to the cdegorization nmethods. Unde the same nunber of caegories, GGST is much snaller than is
correspading CST, andthe indexesbagd onMC are snaller thanthe indexesbased n EL or ME. In Table 6,the
boxed,the wnndetined,andthe odlined nunbersrepreseant query procesingtimes ofthe indexeswhos sizesarealbout
a haf of, sane as,and 10times brger thandatbase $ze (1,206 Kbyteg, respetively. Using similar sized indedes,
CSSTprocesses similarity queies faserthanCST, and GST basel on ME yields the beter performancethan GSST

basedn EL orMC. We hae oltainedsimilar corclusions from experments onatrtificial sequerces.

2 Index Sie (Kbyteg Averag Query Procesing Time (sed wheneg = 30

@' " CST CSST CST CSST

§' EL ME MC EL ME MC EL ME MC EL ME MC
10 | 7,58 | 10,18 | 547 29 618 D | 249.38 | 106.0 | 632.8 | 259.0 | [108.89 | 593.%4
15 | 8,78 | 12,16 | 6,40 43 9% 12 | 189.@ | 73.8 | 593.2 | 173.5 | 86.T7 | 503.9
20 | 9,78 | 14,10 | 7,58 568 1,45 30 | 109.8 | 89.10 | 235.2 | [126.25| 82.8 | 240.&7
40 |13,7% | 23,438 | 102D | 13% | 4,71 68 | 109.15 | 50.13 | 138.16 | 92.31 | 44.%
80 |21,02 |36,32L | 14,674 | 3,86 | 12,1% 166l | 59.9 | 44.06 | 7450 | 56.10 | 39.18 | 74.8
120 | 27,88 | 46,524 | 1957 | 7,1® [20,6%F | 338 | 502 | 44% | 76.8% | 429 | 40.8 | 64.8
160 | 33,98 | 53,16 |23,64. | 10,811 |27,1%6 | 48® | 453 | 458 | 61.8 | 383 | 43.8| 524
200 | 39,18 | 58,7% | 27,68 | 146D | 33,78 | 7080 | 456 | 48.18 | 5046 | 3995 | 48.% | 45.3%
300 | 49,40 | 70,9% | 35,6 | 23,68 | 47,98 | 1205 | 44.8 | 53.06 | 4648 | 40.2 | 58.9 | 4043

Table 6: Average quey proessng time (whene = 30)and $ze of various sufix trees from stockseqences,
with an increasing nunber of céegories



5.2 Query Processing Timewith Increasing Threshold Values

Accordng to the conclusionsfrom sedion 5.1, we choo® CSS based onME as ou index dructure and conpare t
with sequential scanning with increagng threshad values from 5 to 50.Table 7 aw Figure 5 showthe expeimentd
resuts. The sane expeiments onthe atificial seqeences hawe produceal similar resuts. Ourpropsedtechrique isup
to 4.4 timesfaser whenthe indexhas 10 caegories, 7.2times faser with the index d 20 caegories, a 23.2times
fager with the index d 80 @tegories. Rermember thatthe indexeshaving 10, 20 and 80 categories require thespace
abouta hdf of, same as, andLO imes lager than dasbasesize, resgecively. These reults imply that theperformance
gains of aur appraachincrease & the nunber d caegoriesincreases.

500

— 450
@jﬁ Query Procesing Time (sec) Averag g 400 — I
= Number o 350
2 CSST| CSST| CsST|  of £ s oessTeo
~ SS (10 (20) (80) ansvers @ 250 — — CSST(20)
5 | 408.2 91.97 | 56.36 | 17.54 4 § 200
10 | 418.2 | 98.77 | 66.25 | 22.90 1,62 5 1 —CssT(e0)
20 | 426.4 | 109.0+ | 75.94 | 31.51 446 0§l . e ="
30 | 429.11 | 117.6 | 82.28 | 39.19 120,927 © 50 A
40 | 428.2 | 125.83 | 90.60 | 46.54 214,414 -
50 | 428.8. | 130.® | 96.82 | 53.41 297,598 0 5 ‘ 102 ‘ 03 ‘ o 405 ‘ o
threshol d
Tabé 7 Queryprocesingtime and tke nunber of Figure 5 Query proessng time
aswess with increasing threshad values with incressingthreshold values

5.3 Scalability Testing

To studythe salabiity of our appoach, we compare thequey procesing time of the CSST approachbased orME
with that of seqential scanring, as he awerage lengh ard the nunber of the attificial segences increase First, we
increag te awerag lengh o the s@uercesfrom 100 to1,000 while keepingthe nunber ofthe seqences 200 And,
we chang the nunber of sequen@s fom 100 to10,000while maintaining the average lendh of seqienes 200. For
both epeaiments,the rumbers ofcaegories aie dhosen to nmeke the $ze of indexessmaller than he ddabasesize ard
thethreshdd values are fcked toretrieve abait 10° % of the dak stb-sequencesAs shown in Figure 6 and Figure 7,

the prformance @in of our apgoach hdds for very long dataseqences anda large nunber ofdata seaierces.
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Figure 6. Quey processing time withan increasng Figure 7. Quey processing time withan increasng

averag lendgh o sequerces numnber of squerces

6. Conclusions

In this pape we have propsedthe indexing techrique, vhich guaranees nofase dismissds, for fag similarity
retrieval of time-warped subsequence Our methoduse asufix tree as an index sticture andmay be used toanswer
shapebasedjueries sincethe appoximate dapes of subsequenes ae neintained in the indexspae. Experiments on
stockand attificial sequerceshawe shown tha our apgoad is abou 4 times faser than seqeential scanring with a
relatively small index space,andthe performance @ins increaseup b 20 times as the sie of indexes grows. The
contibutions d ou work are :

o Extendng theseach algorithm of a siffix treeto amilarity matchingunde time waping

o Applyingthe comrep of caegorization andspase siffix treeto reduce the index $ze

0 Introducingtwo lowerbound ime warpingdistance functions Dy.wap() and Dipwarp() t0 query proessng

The index spacecan e reduced further if we know the minimum and maximum lenghs of te qieries. Wsing a
warpingwindow condraint [11], we cancdculate the minimum and naximum lenghs of theanswes. The stifi xes
tha are shater thanthe minimum lengh of the arswersneal na beinsertedinto the sufix trees. Fo the siifixes that
arelonger thanthe maximum, only the preixes whos lengths ae equd to the maximum lengh need ¢ beinseted
into sufix trees.

Our appoad can be expandced to multi-dimensional seqienes. Uhder multi-dimensiond sequencs, the

categries are represeried as multi-dimensiona cells. The sane seach tetiniquesof a cdegorized sparse suffix tree



can beapgied to multi-dimensionalcels. We are curertly working in this diredion for retrieving similar medical

image sequenced .
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Appendix A

Theorem 1 If all columns of tre last row of the cunulative distance tade have values geder than ause-given
threshdd €, addng more rows to this cunulative digane table doe nd yield anynewansvers.

Pr oof

Let usassime thatthe cunmulative distarce gble is beng condructed for two nonnull sequerces $and § and S is
locatedin Y-axis andS§ in X-axs. Then, Theaeml can bere-writtenformally as

If Um, n)> efor any m (n=1,2,...,Len§-1)) andfor all n (n=1,2,...,Len)), (a1)
thenynt+1, n)> &

We pove Theorem 1 byinducton.



We assune tha (al) is TRUE.

By the defnition ofy(), y(m+1, 1) s represertedas:
y(m+1, 1) = Rae(S[M+1], §[1]) +y(m, 1)
Since
Dpae(S[m+1], §[1]) = 0 and (by the ddinition of Dyagl)),

y(m, 1) >¢ (by (a2),
we hae y(m+1, 1) >¢

We assune tha y(m+1, K) > € for anyk (k=1,2...,Len(S§) —1).
By the deinition ofy(), y(m+1, k+1) is represened as

y(m+1, k1) = Dhag(S[M+1], §[k+1]) + min(y(m, k+1), y(m+1, K), y(m, k))
Since

Dpae(S[m+1], §[k+1]) =0 (by the déinition of Dyag()),
y(m, k+1) >¢ (by (a2),
y(m+1, K > ¢, and (by (a4),
y(m, k) > ¢ (by (a2),
we hae

y(m+1, k+1) >¢
Based or{a?, (a3) (a4) and @), Theaem1 isTRUE.
Appendix B

Theorem 2 For anytwo nonnull seqences, S and § the fdlowing inecualty hads.
Dib-base( CSI[X], SilY]) < Doae(SIX], Slyl) (x=12,...,Ler(S), y=1,2, ...,LerS))

Pr oof
By definition of CY[x], we know thatMIN(CS[X]) < S[x] £ MAX(CSIX]).
There arethreepossble Dp.nese() €Xpressons accordng to thevaluesof CS[x] and Sly].

Case 1 If MIN(CS[X]) < S[y] < MAX(CSI[X]), then
Dib-base(CS[X], Sy]) = 0< | SIX] = Sly] | = Doa=(S[X], Sily])

Case 2 If MAX(CS[X]) < S[y], then
Dibbase(CS[X], Sly]) = Sly] = MAX(CS[X]) < | SIy] = S[X] | = Drae(S[x], Si[y])

Case 3 If MIN(CS|[x]) > S[y], then
Diovase(CS[X], Sily]) = MIN(CS([X]) - Syl = [ SIX] = Sly] | = Deas(SIX]. Sily])

For dl possble values of CS[x] and {y], Theorem?2 isTRUE.
Appendix C. Theorem 3

Theorem 3 For anytwo nonnull seqences S and $ thefollowing inequality holds.

(a2)

(@3)

(a4)

(@5)



le-warp(CS, S) < Dwarp(Sv S)
Pr oof

The inequdity of Theaem 3 can le rewwritten wsing therecurercerelationfor cumulative disarnce &ble.
(M, N) < UM, N)(M = Len(S), N = Len§))

As theformal proof of Theoem 3 is long, wejust showthesketch d the podf.

By Theorem 2 and thelefinitionsyy,() andy(),

Yo(1, 1)< ¥(1, D). (c1)
Usingindudion piocess fom (cl), we get

Yo(1, N)<y(1, n foralln (n=1,2 ...,Len§)). (c2)
Usingindudion piocess fom (c2), we get

Yo(m, n)<y(m, n) foral mand n (mx1,2,...,LeS), n=1,2,...,Len(S)) (c3)

By (c3),Theaem3 isTRUE.
Appendix D. Theorem 4

Theorem 4 Far any two notnull sequenes $and § if the first N elementsof CS hawe the sanme value, tten the
following inequdity holds.

D’ b-wap(CSi[K:-], §) < Dip-wap(CSi[K:-], §) < Duwap(S[k:-], §) fork=2,3, ..., N
Pr oof

Let usassime thatthefirst N dements ¢ CS hawe the same vaue.

By the deinition of Dip.wap(), we know that
Dib-warp(CS[2:-], §) 2 Dibwarp(CS;, §) = Dib-pase( CS[1], S[1]). (d1)

Let usassime thatforanym(m=2, 3, ..., N-1),
Dib-warp(CS[M:-], §) = Dib-warp(CS;, §) — (M- 1) ODi-pase(CS[1], §[1]), (d2)

Then, we hae
Dibwap(CS[M+1:-], §) 2 Dipwarp(CS[M:-], §) — Dibvae( CS[M], §[1]) =
Dib-warp(CS[M:-], §) — Diovase(CS[1], S[1])
2 Dipwarp(CS;, §) — (M-1) ODi-pase(CS[1], S[1]) — Diese(CS[1], S[1]) =
Dib-warp(CS;, §) — M ODppase(CS[1], S[1])

That iS, Doaarp(CSIM+1:-], S) = Diparp(CS:, S) — M ODipese( CS[1], S[1]) (d3)
By (d1), (d3 ard (d3, we know that,forallk (k=2, 3, ..., N,
Dib-warp(CS;, §) — (k-1) UDis-base(CS[1], S[1]) < Dio-warn(CS[k: -], S)

Thatis,forallk (k=2, 3, ..., N)
D’ b-wap(CSi[K:-], §) < Dip-wap(CS[Kk:-], §) (2< k< N) (d4)

By (d4) andTheoem 3, Theaem4 isTRUE.



