
A Suffix Tree for Fast Similarity Searches of Time-Warped Sub-Sequences

in Sequence Databases

SangHyun Park *, Wesley W. Chu* , Jeehee Yoon +, Chihcheng Hsu #

* Department of Computer Science, University of California, Los Angeles
+ Department of Computer Engineering, Hallym University

Santa Teresa Lab., IBM

Abstract

Several indexing techniques have been proposed to process similarity queries in sequence databases. Most of
them focus on finding similar sequences of the same length using the Euclidean distance metric. However, in
some applications where the elements of sequences may be sampled at different rates, the time warping
distance is a more suitable similarity measure. In this paper, we propose an indexing technique based on a
suffix tree for fast retrieval of similar sub-sequences under time warping. The search algorithm for a suffix
tree is extended to provide similarity searches, and the concept of categorization is applied to reduce index
size and to accelerate query processing. A greater reduction of index size is achieved using a sparse suffix
tree and more speed-up is attained by the fast estimation of the time warping distances between non-stored
suffixes and a query sequence. Our method guarantees no false dismissals since the actual time warping
distances are always lower-bound in the index space. Our access method can also be used to answer shape-
based queries since approximate shapes of sub-sequences are maintained in the index space. Experiments on
stock and artificial sequences show that our approach is about 4 times faster than sequential scanning with a
relatively small index space, and the performance gains increase up to 20 times as the size of indexes grows.

1. INTRODUCTION

Similarity searches in sequence databases are important in many application domains, such as information retrieval,

data mining and clustering. Detecting stocks that have similar growth patterns and finding patients whose lung tumors

have similar evolution fashions are a few examples of similarity queries. Sequential scanning is the simple method for

answering those queries, but it may require an enormous processing time over large sequence databases. Recently,

several indexing techniques [1,2,4,10] have been proposed to process similarity queries more quickly.

Most of the previous techniques [1,2,4] on similarity searches use the Euclidean distance metric as a similarity

measure and apply the following ideas: extract features from sequences, map them into multi-dimensional points and

let spatial access methods manage the mapped points. This idea can be extended to similarity matching of sub-

sequences. However, it is not feasible to build spatial indexes from all sub-sequences since there are O(M∗N∗N) sub-

sequences in M sequences with an average length N. This problem is addressed in [2] assuming knowledge of the

minimum query length.

In some applications, like the matching of voice, audio, and medical signals, where the elements of sequences

may be sampled at different rates, the time warping distance [6,11] is a more suitable similarity measure than the

Euclidean distance metric. Under time warping, one element of a sequence can be matched to one or more elements of

another sequence. So, two matching sequences are not required to have the same length. As an example [7], let us

consider two sequences Si = <20, 20, 21, 21, 20, 20, 23, 23> and Sj
� = <20, 21, 20, 23> where the sequence Si is the

closing price of a stock taken every day and Sj
� is the closing price of another stock taken every other day. Si and Sj�

cannot be compared directly because the sequence Si is longer than Sj
� . The Euclidean distance between Sj

� and any sub-

sequence of length four of Si is greater than 1.41. However, if we duplicate every value of the sequence Sj
� using a time

warp, we find that the two sequences are identical.

In matching similar sequences, it is important to prevent the occurrence of false dismissals. It is said that false

dismissals occurr when a sequence similar to a query sequence is not included in an answer-set. One important

property of a time warping distance is that it does not satisfy the triangle inequali ty [4]. If a time warping distance is

used as a similarity measure, all the spatial access methods as well as all the methods using distance/metric/vantage-

point trees cannot avoid false dismissals. This is based on the fact that any indexing technique assuming the triangle

inequality implicitly or explicitly cannot avoid producing false dismissals when the distance function dissatisfying the

triangle inequality is used as a similarity measure [4].

In some other applications, the shapes of the sub-sequences are more important than the actual element values.

The shapes are preserved even if every element value is scaled or shif ted by a same amount. Finding sub-sequences

that have monotonically increasing patterns and finding sub-sequences that show “goalpost fever” patterns are two

examples of shape-based queries [9,10]. “Goalpost fever” [9] is one of the symptoms of Hodgkin’s disease that

behaves as two consecutive fevers during a 24 hour period. It is not easy to answer shape-based queries if the access

methods do not preserve the information about the shapes of the sequences.

In this paper, we propose a new indexing technique, which guarantees no false dismissals, for fast similarity

retrieval of time-warped sub-sequences. A suff ix tree [12] is used as an index structure and its search algorithm is

extended to support similarity searches. The concept of categorization is applied to reduce the index size. Using

categorization, we fi rst convert sequences into their categorized representations and then construct a categorized suff ix

tree from the converted sequences. To prevent the occurrence of false dismissals under time warping, we define the

distance function Dlb-warp() for computing the lower-bound time warping distances between categorized sequences and

a query sequence. We further reduce the size of a suff ix tree using a sparse suff ix tree [13] that stores only a subset of

suffixes whose first values are different from their immediate preceding elements. During query processing, the non-

stored suff ixes are detected from the stored suff ixes and their lower-bound time warping distances from a query

sequence are calculated quickly by D’ lb-warp(). As the lower-bound time warping distance functions are used in the

index space, the sequences dissimilar to a query sequence may not be filtered out. These sequences are called fals
�

e

alarms. False alarms are detected and discarded during post-processing.

Our access method may also be used to answer shape-based queries since the approximate shapes of sub-

sequences are maintained in the index space. During query processing, we can trace the changing patterns of

categorized values to locate the sub-sequences having similar shapes to a given query shape. The step for detecting and

discarding false alarms is also needed since only approximate shapes are maintained in the index space.

This paper is organized as follows. Background and related works are described in section 2. In section 3, the

method to use a suffix tree for similarity search is illustrated. Section 4 presents categorization techniques to reduce

index size and to speed-up query processing. Experimental results are given in section 5.

2. BACKGROUND AND RELATED WORKS

Let us fi rst describe the basics of time warping and a suffix tree. Table 1 lists some symbols used in this paper.

Symbols Definitions
 <>
 Len(Si)
 Si[p]
 Si[p:q]
 Si[p:-]

empty sequence
length of the sequence Si

pth
�

 element of the sequence Si

sub-sequence of Si, including elements in positions p through q
sub-sequence of Si, including elements in positions p through the end

Table 1: Symbols used in this paper

2.1 Time warping

Time warping allows one element of a sequence to be matched to one or more elements of a target sequence with

restrictions [11] like monotonicity, continuity, boundary conditions, and warping window. The time warping distance

is suitable for applications, like the matching of voice, audio and medical signals (electrocardiograms), where the

elements of sequences may be sampled at different rates.

Definition 1 Given any two non-null sequences Si and Sj� , the time warping distance, Dwar� p(), is defined as follows [6].

Dwar� p(<>, <>) = 0.
Dwar� p(Si, <>) = Dwar� p(<>, Sj

�) = ∞
Dwar� p(Si, Sj

�) = Dbas
�

e(Si[1], Sj
� [1]) + min (Dwar� p(Si, Sj

� [2:-]) + Dwar� p(Si[2:-], Sj
�) + Dwar� p(Si[2:-], Sj

� [2:-]))
Dbas

�
e(Si[1], Sj

� [1]) = | Si[1] – Sj
� [1] |

Dbas
�

e() on two numeric values can be any of the distance functions, but we assume that it is defined as the city-block

distance. Dwar� p(Si, Sj
�) can be calculated efficiently by the dynamic programming technique based on the recurrence

relation γ� (x, y).

Definition 2 Given any two non-null sequences Si and Sj� , the recurrence relation γ� (x, y) (x = 1,2,…,Len(Si), y = 1,2,

…,Len(Sj
�)) which calculates the cumulative time warping distances between elements of Si and Sj� is defined as follows

[11].

γ� (0, 0) = 0
γ� (x, 0) = γ� (0, y) = ∞
γ� (x, y) = Dbas

�
e(Si[x], Sj

� [y]) + min (γ� (x, y-1), γ� (x-1,y), γ� (x-1,y-1))

The dynamic programming algorithm [11] fi lls in the table of cumulative distances as the computation proceeds. The

final cumulative distance, γ� (Len(Si), Len(Sj
�)), is the desired distance between Si and Sj� , and the minimum matching can

be traced backward in the table – choosing the previous cells with the lowest cumulative distance. This computation

has the complexity O(Len(Si) ∗ Len(Sj
�)).

2.2 Suffix Tree

A suffix tree [12] is an index structure that has been proposed as a fast access method to locate sub-strings (or sub-

sequences) that exactly match a query string (or a query sequence). A suff ix is a sub-sequence that ends with the last

element of a sequence, and a prefix is a sub-sequence that starts with the first element of a sequence. In a sequence

whose length is N, there are N suff ixes and N prefixes.

Like any other tree, a suff ix tree consists of nodes and edges. The leaf nodes are labeled with the identifiers of the

sequences and the starting positions of the suffixes that they represent. The internal nodes Ni of the tree are of degree ≥

2 (with the exception of the root of a trivial suffix-tree), and represent the longest common prefixes of the suff ixes

represented by the leaf nodes under Ni. The sub-sequences represented by any node of the tree may be obtained by

concatenating labels associated with the edges on the unique path from the root to the particular node in question.

Therefore, the suff ixes are obtained by concatenating the labels associated with the edges on the paths from root to

leaf. We use the symbol Edge(Ni, Nj
�) for the edge connecting the node Ni(parent) to the node Nj

� (child). A suff ix tree

can be constructed with complexity O(M ∗ N), where M is the number of sequences and N is the average length of the

sequences. The total number of nodes in the tree is constrained due to two facts: there are O(M ∗ N) leaf nodes; and the

degree of any internal node is at least 2. Therefore, the maximum number of nodes and overall space requirement of

the suffix tree is linear in M ∗ N [12].

Example 1 We consider two sequences S1 = <4, 5, 6, 7, 6, 6> and S2 = <4, 6, 7, 8>. The constructed suffix tree is

shown in Figure 1. We use the symbol ‘$’ as the end mark of the suff ixes.

4

 5
 6

 7
 6

 6
 $

6
�
7
8

�

$
�

 5
 6
7

6
�

6

�

$
�

6
�

7$
�

6
�

 6
$

�

8
�
 $

7

6
�

 6
$

�

8
�
 $

8 $
�

(S1,1) (S2,1) (S1,2) (S1,6) (S1,5) (S1,4) (S2,3)

(S1,3) (S2,2)

(S2,4)

Figure 1: Suff ix Tree from S1=<4, 5, 6, 7, 6, 6> and S2=<4, 6, 7, 8>

N
	

1

N
	

2

N
	

3

 N

	
4 N

	
5
� N

	
7

N
	

6

N
	

8 N
	

9
�

N
	

10 N
	

11

N
	

12

N
	

13 N
	

14

N
	

15

 6
$

�

The algorithm to locate sub-sequences that exactly match a query sequence Q is given in Figure 2. This algorithm

starts from the root and quickly progresses through the tree with complexity O(Len(Q)).

Algorithm: ExactSearch(CurNode)
Begin

 Visit the node, CurNode.�
 Select the child node, ChildNode, whose associated label matches a prefix of Q.�
 Remove the matched prefix from Q.�
 If Q becomes empty,

 then report all leaf nodes under ChildNode as answers,
 else call ExactSearch(ChildNode).
End

Figure 2: Exact Search Algorithm for a suffix tree

2.3 Related Works

Several approaches for fast retrieval of similar sequences have recently been proposed. In [1], sequences of the time

domain are converted into sequences of the frequency domain by the Discrete Fourier Transform and are subsequently

mapped into multi-dimensional points that are managed by the R∗-tree. In [2], the technique of [1] is extended to locate

similar sub-sequences. Assuming the minimum query length W is known in advance, features are extracted from every

sub-sequence of size W and are mapped into multi-dimensional points. The mapped points are represented by their

minimum bounding rectangles. Because the approaches of [1] and [2] do not permit the time warping of elements, the

sequences with different sampling rates can not be matched.

Sequence matching that allows transformations of sequences are proposed in [5] and [7]. In [5], the sequences are

grouped into equivalent classes according to shape-based transformations such as scaling and shifting, and are

represented by their normal forms from which the indexes are buil t. However, the normal forms do not consider the

time warping of elements. In [7], authors proposed a class of transformations that can be used in a query language to

express similarity. The transformations include moving average, time warping and reversing. They implement

similarity matching under those transformations on top of an R-tree index. Since the R-tree index is based on triangular

inequality, they may generate false dismissals under time warping.

The access methods of [4] and [10] permit the matching of sequences of different lengths. In [10], they use a

modified version of edit distance and consider two sequences matching if a majority of elements in the sequences

match. For efficient retrieval of matching sequences, they first group data sequences by length and then index the

groups by vp-trees (vantage point trees). However, they may generate false dismissals under a non-metric edit distance

function. In [4], they use a time warping distance as a similarity measure. The filtering process consists of two steps:

FastMap index filter and lower-bounding distance filter. Lower-bounding distance filter is used to quickly discard

many false alarms that FastMap [3] introduces. Note that their approach is also based on triangular inequality. So, they

can not guarantee no false dismissals.

Similarity matching based on shapes of sequences is proposed in [8] and [9]. In [9], they present a shape

definition language, called SDL for retrieving sequences based on their shapes. SDL is able to perform a “blurry”

match where the user cares about the overall shapes but does not care about the specif ic values. They provide an index

structure for speeding up the execution of SDL queries. In [8], the authors introduce the notion of generalized

approximate queries that specify the general shapes of data histories without depending on specific values. To support

those queries, they break sequences into meaningful sub-sequences and represent them as mathematical functions.

3. SIMILARITY SEARCH ON A SUFFIX TREE

The problem we are trying to solve is formally defined as: Given M sequences S1, S2, …, SM of arbitrary lengths, a

query sequence Q and a user given threshold ε� , we want to find sub-sequences Si
� [p:q] (i = 1, 2, … M) whose time

warping distances from Q are less than or equal to ε� .

Our proposed solution to the above problem uses a suffix tree as an index structure. We construct a suff ix tree

from the suff ixes of all data sequences in databases using the classical construction algorithm [12]. Our similarity

search algorithm for finding time-warped sub-sequences is based on the exact search algorithm defined in Figure 2.

However, the exact search algorithm can not be directly applied to our problem domain since it is based on exact

matching and does not allow the time warping of elements. The modified search algorithm is given in Figure 3. From

the root, it traverses the suff ix tree using a depth-first downward traversal approach. When it visits a node, it inspects

each child node to find new answers and to determine whether further going-down is needed. This inspection process

consists of building and checking the cumulative distance table.

Algorithm SimilaritySearch-on-Suffix Tree(CurNode, CurTable)
Begin�

 Visit the node, CurNode.�
 For each child node, ChildNode, of CurNode, do the following.� Using the recurrence relation γ� (x, y), construct a new cumulative distance table, NewTable, on top of CurTable

for a query sequence and the label associated with the edge, Edge(CurNode, ChildNode).� Find new answers by inspecting the last columns of NewTable and insert them into the answer-set.� Determine whether we need to go further down by checking all columns of the last row of NewTable.� If further visit is required, call SimilaritySearch-on-Suffix Tree (ChildNode, NewTable).
End

Figure 3: Similarity search algorithm for a suffix tree

Let us assume that the search algorithm visits the node, Ni. The first step is to build a cumulative distance table for a

query sequence Q and the label associated with the edge pointing to each child node of Ni. If Ni is a root node, the

cumulative distance table is built from the bottom. Otherwise, it is built by augmenting new rows on the current

cumulative distance table that has been accumulated from the root to Ni. As the labels associated with edges are

located on Y-axis and a query sequence Q on X-axis, the cumulative distance table becomes taller as the searches

proceed to leaf nodes.

The next step is to examine the last columns of newly added rows of the cumulative distance table to find new

answers. If the last column of the kth
� row has a value less than or equal to the user-given threshold ε� , the prefix of

length k from the label of Y-axis is inserted into the answer-set. The final step is to check all columns of the last row to

determine whether or not further going-down is needed. If at least one column of the last row has a value less than or

equal to ε� , we continue down the tree to find more answers. Otherwise, the search moves to the next child node of Ni.

This branch-pruning process is based on Theorem 1.

Theorem 1 If all columns of the last row of the cumulative distance table have values greater than a user-given

threshold ε� , adding more rows to this table does not yield any new answers.

Proof The proof is shown in appendix A.

Example 2 For a suffix tree shown in Figure 1, a query sequence Q = <3, 4, 4> and ε� = 2, we first visit the root node

N1 and check each child node of N1. To inspect the node N2, we build the cumulative distance table having one row by

locating the label of Edge(N1, N2) on Y-axis and Q on X-axis, and fi ll ing the cells of the row with the cumulative time

warping distances. As the last column of the first row has the value 1, which is smaller than ε� , the label <4> of Y-axis

is inserted into the answer-set. The search continues to check the node N3
� since there are columns of the first row

having the values not greater ε� . The five new elements corresponding to the label of Edge(N2, N3
�) are located on top of

the fi rst element of Y-axis, and then five new rows are filled with the cumulative time warping distances. As the last

column of the second row has the value 2, which is equal to ε� , <4,5> is inserted into the answer-set. Even if there are

children nodes under N3
� , the search does not continue down since all columns of the last row have the values larger

than ε� . Thus, the search continues to check the node N4. Table 2 shows the cumulative distance table when the search

algorithm checks the node N3
� .

row 6→� 16 11 11
row 5→� 13 9 9
row 4→� 10 7 7
row 3→� 6 4 4
row 2→� 3 2 2

row 1→� 1 1 1

Table 2: Cumulative distance table for a query sequence Q=<3, 4, 4> and the label <4, 5, 6, 7, 6, 6>
on the path from N1 to N3

� of the suff ix tree of Figure 1

The similarity search algorithm defined in Figure 3 executes faster than sequential scanning due to the shared

cumulative distance tables and the branch-pruning process. This performance increases as the number of common sub-

sequences grows.

4. CATEGORIZATION

In this section, we shall introduce the concept of categorization as a means of reducing the index size and accelerating

query processing. To categorize element values, we divide the ranges of element values into sub-ranges. Each sub-

range is represented by a simple identifier called the category-id, and each element value is represented by its

corresponding category-id. Thus, the sequences of values are converted into the sequences of category-ids.

∑
�

=

=
Nc
�

i

ii Cp CPCH
1

)(log)()(

∑
�

=

−=
Nc
�

i

ii CCCUTSCT
2

1),()(

4.1 Categorization Methods

We shall now introduce three categorization methods.

4.1.1 Equal-Length-Interval Categorization

As the name implies, all the categories have equal interval length (MAX-MIN) / Nc! where MIN is a minimum value of

sequences, and MAX is a maximum value of sequences, and Nc " is the number of categories. This categorization is

simple and fast, but it loses information on the sequences because it ignores value or frequency distribution of the

sequences.

4.1.2 Maximum-Entropy Categorization

The entropy [14] of categorization is defined as: where P(Ci) is the probability that

an element is included in the ith
�
 category. To minimize the loss of information for the sequences, maximum-entropy

categorization decides the boundaries of categories that generate maximum entropy value. The boundaries can be

determined easily by making all categories include the same number of elements (P(C1) = P(C2) = … = P(CN
#

c)).

4.1.3 Minimum-Cut Categorization

Given two categories Ci-1 and Ci, if two values <V j-1
� , Vj

� > satisfies the condition V j-1
� ∈ Ci-1 and Vj

� ∈ Ci, then we say the

values are cut by the boundary of Ci-1 and Ci. Then, total number of cuts of the categorization C is defined as follows.

where CUTS(Ci-1, Ci) is the number of cuts made by the boundary between category

Ci-1 and category Ci. To maximize the total number of common sub-sequences, this method determines the category

boundaries that generate the minimum number of total cuts.

4.2 Suffix Tree with Categorization

After categorizing the element values of the sequences, we convert the sequence of numbers into a sequence of

category-ids. We can then build a suffix tree based on the categorized sequences. We call this suffix tree the

categorized suffix tree (CST). The categorized suff ix tree is constructed using the same construction algorithm of the

suffix tree but the edges now represent the categorized sub-sequences. In general, a categorized suffix tree has more

common edges than an original suffix tree; hence the tree is smaller and the query processing is faster.

Example 3 Three categories are produced from S1 = <4, 5, 6, 7, 6, 6> and S2 = <4, 6, 7, 8> using the maximum-entropy

categorization. The range of each category is shown in Table 3. According to this categorization, S1 and S2 are

converted to their categorized representations, CS1 = <C1, C1, C2, C3
� , C2, C2> and CS2 = <C1, C2, C3

� , C3
� >. Note that

CS1 and CS2 have more common sub-sequences than those included in S1 and S2.

Category MIN MAX
C1

C2

C3
�

4
6
7

5
6
8

Table 3: Minimum and maximum value of each category produced by maximum-entropy categorization
 from S1 = <4,5,6,7,6,6> and S2 = <4,6,7,8>

The similarity search algorithm defined in Figure 3 needs to be modified to reflect the categorized representation of

sequences. First, the recurrence relation γ� (x, y) is changed to the lower-bound recurrence relation γ� lb(x, y) to construct

a lower-bound cumulative distance table for a query sequence and a categorized sub-sequence. And, post-processing is

added at the final stage to discard false alarms. Note that the actual element values of the query sequence is used to

compute γ� lb(). The lower-bound time warping distance function Dlb-warp() and its corresponding lower-bound recurrence

relation γ� lb() are defined as follows.

Definition 3 Given any two non-null sequences Si and Sj� , the distance function Dlb-warp() that returns the lower-bound

time warping distance between Si and Sj� is defined as follows.

Dlb-warp(<>, <>) = 0.
Dlb-warp(CSi, <>) = Dlb-warp(<>, Sj

�) = ∞
Dlb-warp(CSi, Sj

�) = Dlb-base(CSi[1], Sj
� [1]) +

 min (Dlb-warp(CSi, Sj
� [2:-]), Dlb-warp(CSi[2:-], Sj

�), Dlb-warp(CSi[2:-],Sj
� [2:-]))

Dlb-base(CSi[x], Sj
� [y]) = 0 (if Sj

� [y] is included in CSi[x])
= Sj

� [y] – MAX(CSi[x]) (if Sj
� [y] is larger than MAX(CSi[x]))

= MIN(CSi[x]) – Sj
� [y] (if Sj

� [y] is smaller than MIN(CSi[x]))

As Si[x] is represented by CSi[x], the exact distance between Si[x] and Sj
� [y] can not be computed. As a lower-bound

distance, we use Dlb-base(CSi[x],Sj
� [y]) that returns the possible minimum distance between Si[x] and Sj

� [y]. This is

shown in Figure 4. Here, CSi[x] represents the category-id in which the xth
�
 element of the sequence Si is included.

Figure 4: Possible minimum distance between CSi[x] and Sj
� [y]

Definition 4 Given any two non-null sequences Si and Sj� , the recurrence relation γ� lb(x, y) (x = 1,2,…,Len(Si), y =

1,2,…,Len(Sj
�)) that calculates the lower-bound cumulative distances Dlb-warp() is defined as follows.

γ� lb(0, 0) = 0
γ� lb(x, 0) = γ� lb(0,y) = ∞
γ� lb(x, y) = Dlb-base(CSi[x], Sj

� [y]) + min (γ� lb(x, y-1), γ� lb(x-1,y), γ� lb(x-1, y-1))

Theorem 2 For any two non-null sequences Si and Sj� , the following inequality holds.

Dlb-base(CSi[x], Sj
� [y]) ≤ Dbas

�
e(Si[x] , Sj

� [y]) (x =1, 2, …,Len(Si), y = 1, 2, …, Len(Sj
�))

Proof The proof is shown in appendix B.

Theorem 3 For any two non-null sequences Si and Sj� , the following inequality holds.

Dlb-warp(CSi, Sj
�) ≤ Dwar� p(Si, Sj

�)

Proof The proof is shown in appendix C.

By Theorem 3, we can guarantee that our similarity search algorithm based on Dlb-warp() does not generate false

dismissals. However, the sub-sequences whose time warping distances are larger than ε� may be included in the

answer-set. They are detected and discarded during post-processing.

Example 4 Using the categorization defined in Example 3, we construct the lower-bound cumulative distance table

corresponding to the cumulative distance table shown in Table 2. Y-axis now represents the category-ids of the edges

of the categorized suffix tree. The lower-bound time warping distances of Table 4 are computed using γ� lb().

MAX(CSi[x])

MIN(CSi[x])

• Sj
� [y]

possible minimum
distance = 0

possible minimum
distance = Sj

� [y] – MAX(CSi[x])
possible minimum

distance = MIN(CSi[x]) – Sj
� [y]

 • Sj
� [y]

 • Sj
� [y]

MIN(CSi[x]) MIN(CSi[x])

MAX(CSi[x]) MAX(CSi[x])

row 6→� 13 9 9
row 5→� 10 7 7
row 4→� 7 5 5
row 3→� 3 2 2
row 2→� 0 0 0

row 1→� 0 0 0

Table 4: Lower-bound cumulative distance table for a query sequence Q = <3,4,4> and the categorized label
<C1,C1,C2,C3

� ,C2,C2> corresponding to the label on Y-axis of the cumulative distance table of Table 2

4.3 Sparse Suffix Tree with Categorization

A suffix tree that stores only a subset of suff ixes is called a sparse suffix tree [13]. Since the size of the suff ix tree is

linear with respect to the number of leaves, the sparse suff ix tree is smaller than an original suff ix tree. We call

suffixes inserted into a tree stored-suffixes, and suffixes not inserted into a tree non-stored suffixes. In this work, we

insert only suffixes whose fi rst values are different from values of their immediate preceding elements. That is, Si[p:-]

is inserted into a suff ix tree only if Si[p] ≠$ Si[p-1]. We call a sparse suffix tree constructed from categorized sequences

a categorized sparse suffix tree (CSST).

Example 5 In Example 3, S1 and S2 are transformed to their categorized representations, CS1 = <C1, C1, C2, C3
� , C2,

C2> and CS2 = <C1, C2, C3
� , C3

� >, respectively. Our categorized sparse suffix tree stores only 7 suff ixes (CS1[1:-],

CS1[3:-], CS1[4:-], CS1[5:-], CS2[1:-], CS2[2:-], and CS2[3]) from 10 suffixes.

The similarity search algorithm for a categorized suffix tree can also be used on a sparse suff ix tree. However, if we

use that algorithm without modification, we may miss qualified sub-sequences included in non-stored suffixes.

Therefore, we have to find and process non-stored suffixes during tree traversal. Non-stored suff ixes can be found

easily from the stored suffixes. After finding all the non-stored suff ixes, using D’ lb-warp(), we compute the lower-bound

time warping distance between a query sequence and those non-stored suffixes.

Definition 5 For any two non-null sequences Si and Sj� , if the first N elements of CSi have same value, then the distance

function D’ lb-warp(CSi[k:-], Sj
�) (k = 2,3,…,N) that returns the lower-bound distance of Dlb-warp(CSi[k:-], Sj

�) is defined as

follows: D’ lb-warp(CSi[k:-], Sj
�) = Dlb-warp(CSi, Sj

�) – (k-1) ∗ Dlb-base(CSi[1], Sj
� [1])

 If we know the value of Dlb-warp(CSi, Sj
�), then D’ lb-warp(CSi[k:-], Sj

�) can be computed much faster than the straight

computation of Dlb-warp(CSi[k:-], Sj
�).

Theorem 4 For any two non-null sequences Si and Sj� , if the first N elements of CSi have the same value, then the

following inequali ty holds:

D’ lb-warp(CSi[k:-], Sj
�) ≤ Dlb-warp(CSi[k:-], Sj

�) ≤ Dwar� p(Si[k:-], Sj
�) for k = 2, 3, …, N

Proof The proof is shown in appendix D.

4.4 Post-Processing

Since the lower-bound distance functions, Dlb-warp() and D’ lb-warp(), are used in our search, the unqualified answers

whose time warping distances are larger than a user-given threshold ε� may be included in the answer-set. During post-

processing, the actual sub-sequences corresponding to answers in the answer-set are retrieved and their time warping

distances from a query sequence are calculated. Those sub-sequences whose actual time warping distances are larger

than ε� are removed from the answer-set.

5. Experiments

To study the performance improvements of our proposed similarity search algorithms, we performed several

experiments on 541 stock history data extracted from S&P 500 stock data (http://biz.swcp.com/stocks/) and on the

artificial data sequences. The stock data are based on the closing prices of stocks on each day, and the average length

of them is 232. The expression for generating the artificial sequences is defined as: Si[p] = Si[p−1] + Zp% where Zp% (p =

1, 2, …) are independent, identically distributed random variables. The number of and the average length of the

artificial sequences vary according to each experiment. We extract 2 query sequences from the stocks whose average

prices are below $30, 5 query sequences from the stocks whose average prices are between $30 and $60, and 3 query

sequences from the other stocks. The 10 query sequences are extracted from the artificial sequences in a similar

manner. The average length of the query sequences from both the stock sequences and the artificial sequences is 20.

All experiments except for scalabil ity testing in section 5.3 are performed on both the stock sequences and the artificial

sequences. The short notations used in this section are summarized in Table 5.

Symbols Definitions
SS

CST
CSST

CSST(N)
EL
ME
MC

Sequential Scanning
Categorized Suff ix Tree
Categorized Sparse Suffix Tree
Categorized Sparse Suff ix Tree having N categories
Categorization Method based on Equal-Length Interval
Categorization Method based on Maximum-Entropy
Categorization Method based on Minimum-Cut

Table 5: Notations used in the experiments

5.1 Index Size and Query Processing Time with Increasing Number of Categories

Table 6 shows the average query processing time (when ε� is 30) and size of various suff ix trees built from the stock

sequences. On the whole, as the number of categories increases, the searches become faster at the cost of bigger index

space. However query processing becomes slower when the number of categories exceeds a certain limit, which varies

according to the categorization methods. Under the same number of categories, CSST is much smaller than its

corresponding CST, and the indexes based on MC are smaller than the indexes based on EL or ME. In Table 6, the

boxed, the underlined, and the outlined numbers represent query processing times of the indexes whose sizes are about

a half of, same as, and 10 times larger than database size (1,296 Kbytes), respectively. Using similar sized indexes,

CSST processes similarity queries faster than CST, and CSST based on ME yields the better performance than CSST

based on EL or MC. We have obtained similar conclusions from experiments on artificial sequences.

Index Size (Kbytes) Average Query Processing Time (sec) when ε� = 30

CST CSST CST CSST
&#'

ca
teg

o
rie

s EL ME MC EL ME MC EL ME MC EL ME MC

10
15
20
40
80
120
160
200
300

 7,513
 8,753
 9,758
13,796
21,092
27,808
33,943
39,153
49,44

(
0

10,178
12,166
14,100
23,408
36,321
46,52

(
4

53,165
58,795
70,936

 5,477
 6,409
 7,516
10,229
14,674
19,527
23,641
27,680
35,679

 290
 434
 568
 1,386
 3,865
 7,100
10,811
14,659
23,678

 618
 996
 1,425
 4,711
12,195
20,635
27,116
33,743
47,93

(
3

 90
 172
 301
 643
 1661
 3323
 4889
 7080
12051

249.38
189.60
109.93

 59.19
 50.21
 45.33
 45.61
 44.83

106.60
 73.98

 50.13
 44.06
 44.59
 45.78
 48.18
 53.05

632.43
593.62
235.72
138.16

 76.86
 61.80
 50.46
 46.43

259.60
173.54
126.25
 92.34
 56.10
 42.50
 38.31

 40.22

108.89
 86.17
 82.23
 44.85

 40.68
 43.88
 48.55
 58.91

593.24
503.99
240.87
139.18
 74.89
 64.81
 52.91
 45.36

Table 6: Average query processing time (when ε� = 30) and size of various suffix trees from stock sequences,
with an increasing number of categories

5.2 Query Processing Time with Increasing Threshold Values

According to the conclusions from section 5.1, we choose CSST based on ME as our index structure and compare it

with sequential scanning with increasing threshold values from 5 to 50. Table 7 and Figure 5 show the experimental

results. The same experiments on the artificial sequences have produced similar results. Our proposed technique is up

to 4.4 times faster when the index has 10 categories, 7.2 times faster with the index of 20 categories, and 23.2 times

faster with the index of 80 categories. Remember that the indexes having 10, 20 and 80 categories require the space

about a half of, same as, and 10 times larger than database size, respectively. These results imply that the performance

gains of our approach increase as the number of categories increases.

Query Processing Time (sec)

threshold(ε)

SS
CSST
(10)

CSST
(20)

CSST
(80)

Average
Number

of
answers

5
10
20
30
40
50

408.31
418.32
426.44
429.1

(
1

428.2
(

2
428.8

(
1

 91.97
 98.77
109.04
117.61
125.63
130.69

56.36
66.25
75.94
82.28
90.60
96.82

17.54
22.90
31.51
39.19
46.54
53.41

 4
 1,632
 47,446
 129,927
 214,414
 297,598

 Table 7: Query processing time and the number of Figure 5: Query processing time
 answers with increasing threshold values with increasing threshold values

5.3 Scalability Testing

To study the scalability of our approach, we compare the query processing time of the CSST approach based on ME

with that of sequential scanning, as the average length and the number of the artificial sequences increase. First, we

increase the average length of the sequences from 100 to 1,000 while keeping the number of the sequences 200. And,

we change the number of sequences from 100 to 10,000 while maintaining the average length of sequences 200. For

both experiments, the numbers of categories are chosen to make the size of indexes smaller than the database size and

the threshold values are picked to retrieve about 10-3 % of the data sub-sequences. As shown in Figure 6 and Figure 7,

the performance gain of our approach holds for very long data sequences and a large number of data sequences.

0
)50

*100

150

200

250

30
+

0

35
+

0

400

450

50
*

0

5
*

102 03 0 405 0
t

,
hreshol d

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

SS
-

C
.

SST(10)

C
.

SST(20)

C
.

SST(80)

6. Conclusions

In this paper, we have proposed the indexing technique, which guarantees no false dismissals, for fast similarity

retrieval of time-warped sub-sequences. Our method use a suffix tree as an index structure and may be used to answer

shape-based queries since the approximate shapes of sub-sequences are maintained in the index space. Experiments on

stock and artificial sequences have shown that our approach is about 4 times faster than sequential scanning with a

relatively small index space, and the performance gains increase up to 20 times as the size of indexes grows. The

contributions of our work are :

/
 Extending the search algorithm of a suffix tree to similarity matching under time warping

0
 Applying the concept of categorization and sparse suffix tree to reduce the index size

1
 Introducing two lower-bound time warping distance functions Dlb-warp() and D’l b-warp() to query processing

The index space can be reduced further if we know the minimum and maximum lengths of the queries. Using a

warping window constraint [11], we can calculate the minimum and maximum lengths of the answers. The suffi xes

that are shorter than the minimum length of the answers need not be inserted into the suffix trees. For the suff ixes that

are longer than the maximum, only the prefixes whose lengths are equal to the maximum length need to be inserted

into suffix trees.

Our approach can be expanded to multi-dimensional sequences. Under multi-dimensional sequences, the

categories are represented as multi-dimensional cells. The same search techniques of a categorized sparse suffix tree

0
2

1000

2000

30
3

00

4000

50
4

00

60
5

00

100 500 1000 3000 6000 10000

number of sequences

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

SS
6

CS
7

ST

Figure 7. Query processing time with an increasing
number of sequences

Figure 6. Query processing time with an increasing
average length of sequences

0
8

50
9

0

1000

1500

2000

2500

300
:

0

100 200 400 600 800 1000

av; erage l engt h of sequen ces

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

SS
<

CS
=

ST

can be applied to multi-dimensional cells. We are currently working in this direction for retrieving similar medical

image sequences [15].

References

[1] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search in sequence databases. In
Proceedings of FODO Conference, Evanston, IL, USA, October 1993.

[2] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence matching in time-series
databases. In Proceedings of the ACM SIGMOD Conference, May 1994.

[3] Christos Faloutsos and K. Lin. Fastmap: A fast algorithm for indexing, data-mining and visualization of
traditional and multimedia datasets. In Proceedings of the ACM SIGMOD Conference, San Jose, CA, USA, June
1995.

[4] Byoung-Kee Yi, H. V. Jagadish, and Christos Faloutsos. Efficient Retrieval of Similar Time Sequences Under
Time Warping. In International Conference of Data Engineering, 1998

[5] Dina Q. Goldin and Paris C. Kanellakis. On similarity queries for time-series data: constraint specification and
implementation. In Proceedings of Constraint Programming, Marseilles, September 1995.

[6] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition. Prentice Hall , 1993.
[7] Davood Rafiei and Alberto Mendelzon. Similarity-based queries for time series data. In Proceedings of the ACM

SIGMOD Conference, Tucson, AZ, May 1997.
[8] Hagit Shatkay and Stanley B. Zdonik. Approximate Queries and Representations for Large Data Sequences, in

Proceedings of Data Engineering Conference, February 1994.
[9] R

>
akkesh Agrawal, Giuseppe Psaila, Edward L. Wimmers and Mohamed Z

?
aït. Querying Shapes of Histories, in

Procee
@

dings of the 21stA
 VLDB Conference, Zürich, Switzerland, 1995

[10] Tolga Bozkaya, Nasser Yazdani, and Meral B C D E F E G lu. Matching and Indexing Sequences of Different Lengths,
in Proceedings of CIKM, Las Vegas, NV, 1997

[11] Donald J. Berndt and James Clifford. Finding Patterns in Time Series, Advances in Knowledge Discovery and
Data Mining, AAAI/MIT Press, 1996

[12] Graham A. Stephen. String Searching Algorithms. World Scientif ic Publishing Co., 1994
[13] Juha KH rkk I inen and Esko Ukkonen. Sparse Suffix Trees, in Proceedings of COCOON, HongKong, 1996
[14] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. Urbana, Ill.: University of Illinois

Press, 1964
[15] Wesley W. Chu, Alfonso F. Cardenas, and Ricky K. Taira. KMeD: a Knowledge-based Multimedia Medical

Distributed Database System, Information Systems, Vol.20, No.2, Premagon-Press/Elsevier Science, 1995

Appendix A

Theorem 1 If all columns of the last row of the cumulative distance table have values greater than a user-given
threshold ε� , adding more rows to this cumulative distance table does not yield any new answers.

Proof

Let us assume that the cumulative distance table is being constructed for two non-null sequences Si and Sj� , and Si is
located in Y-axis and Sj

� in X-axis. Then, Theorem1 can be re-written formally as:

If γ(m, n) > ε� for any m (m=1,2,…,Len(Si
� −1)) and for all n (n=1,2,…,Len(Sj

J)), (a1)
then γ(m+1, n) > ε� .

We prove Theorem 1 by induction.

We assume that (a1) is TRUE. (a2)

By the definition of γ� (), γ� (m+1, 1) is represented as:
γ� (m+1, 1) = Dbas

�
e(Si[m+1], Sj

� [1]) + γ� (m, 1)
Since

Dbas
�

e(Si[m+1], Sj
� [1]) ≥ 0 and (by the definition of Dbas

�
e()),

γ� (m, 1) > ε� (by (a2)),
we have γ� (m+1, 1) > ε� (a3)

We assume that γ� (m+1, k) > ε� for any k (k=1,2,…,Len(Sj
�) –1). (a4)

By the definition of γ� (), γ� (m+1, k+1) is represented as:
γ� (m+1, k+1) = Dbas

�
e(Si[m+1], Sj

� [k+1]) + min(γ� (m, k+1), γ� (m+1, k), γ� (m, k))
Since

Dbas
�

e(Si[m+1], Sj
� [k+1]) ≥ 0 (by the definition of Dbas

�
e()),

γ� (m, k+1) > ε� (by (a2)),
γ� (m+1, k) > ε� , and (by (a4)),
γ� (m, k) > ε� (by (a2)),

we have
γ� (m+1, k+1) > ε� (a5)

Based on (a2), (a3), (a4) and (a5), Theorem 1 is TRUE.

Appendix B

Theorem 2 For any two non-null sequences, Si and Sj� , the following inequality holds.
Dlb-base(CSi[x], Sj

� [y]) ≤ Dbas
�

e(Si[x] , Sj
� [y]) (x =1,2,…,Len(Si), y=1,2, …,Len(Sj

�))

Proof

By definition of CSi[x], we know that MIN(CSi[x]) ≤ Si[x] ≤ MAX(CSi[x]) .

There are three possible Dlb-base() expressions according to the values of CSi[x] and Sj
� [y].

Case 1 : If MIN(CSi[x]) ≤ Sj
� [y] ≤ MAX(CSi[x]), then

Dlb-base(CSi[x], Sj
� [y]) = 0 ≤ | Si[x] − Sj

� [y] | = Dbas
�

e(Si[x], Sj
� [y])

Case 2 : If MAX(CSi[x]) < Sj
� [y], then

Dlb-base(CSi[x], Sj
� [y]) = Sj

� [y] − MAX(CSi[x]) ≤ | Sj
� [y] − Si[x] | = Dbas

�
e(Si[x], Sj

� [y])

Case 3 : If MIN(CSi[x]) > Sj
� [y], then

Dlb-base(CSi[x], Sj
� [y]) = MIN(CSi[x]) − Sj

� [y] ≤ | Si[x] − Sj
� [y] | = Dbas

�
e(Si[x], Sj

� [y])

For all possible values of CSi[x] and Sj
� [y], Theorem 2 is TRUE.

Appendix C. Theorem 3

Theorem 3 For any two non-null sequences Si and Sj� , the following inequality holds.

Dlb-warp(CSi, Sj
�) ≤ Dwar� p(Si, Sj

�)

Proof

The inequali ty of Theorem 3 can be re-written using the recurrence relation for cumulative distance table.
γlb

K (M, N) ≤ γ(M, N)(M = Len(Si
�), N = Len(Sj

L))

As the formal proof of Theorem 3 is long, we just show the sketch of the proof.

By Theorem 2 and the definitions γ� lb() and γ� (),
γ� lb(1, 1) ≤ γ� (1, 1). (c1)

Using induction process from (c1), we get
γ� lb(1, n) ≤ γ� (1, n) for all n (n=1,2, …,Len(Sj

�)). (c2)
Using induction process from (c2), we get

γ� lb(m, n) ≤ γ� (m, n) for all m and n (m=1,2,…,Len(Si), n=1,2, …,Len(Si)) (c3)
By (c3), Theorem 3 is TRUE.

Appendix D. Theorem 4

Theorem 4 For any two not-null sequences Si and Sj� , if the first N elements of CSi have the same value, then the
following inequali ty holds.

D’ lb-warp(CSi[k:-], Sj
�) ≤ Dlb-warp(CSi[k:-], Sj

�) ≤ Dwar� p(Si[k:-], Sj
�) for k = 2, 3, …, N

Proof

Let us assume that the fi rst N elements of CSi have the same value.

By the definition of Dlb-warp(), we know that
Dlb-warp(CSi[2:-], Sj

�) ≥ Dlb-warp(CSi, Sj
�) – Dlb-base(CSi[1], Sj

� [1]). (d1)

Let us assume that for any m (m = 2, 3, …, N–1),
Dlb-warp(CSi[m:-], Sj

�) ≥ Dlb-warp(CSi, Sj
�) – (m– 1) ∗ Dlb-base(CSi[1], Sj

� [1]), (d2)

Then, we have
Dlb-warp(CSi[m+1:-], Sj

�) ≥ Dlb-warp(CSi[m:-], Sj
�) – Dlb-base(CSi[m], Sj

� [1]) =
 Dlb-warp(CSi[m:-], Sj

�) – Dlb-base(CSi[1], Sj
� [1])

 ≥ Dlb-warp(CSi, Sj
�) – (m–1) ∗ Dlb-base(CSi[1], Sj

� [1]) – Dlb-base(CSi[1], Sj
� [1]) =

 Dlb-warp(CSi, Sj
�) – m ∗ Dlb-base(CSi[1], Sj

� [1])

That is, Dlb-warp(CSi[m+1:-], Sj
�) ≥ Dlb-warp(CSi, Sj

�) – m ∗ Dlb-base(CSi[1], Sj
� [1]) (d3)

By (d1), (d2) and (d3), we know that, for all k (k = 2, 3, …, N),
Dlb-warp(CSi, Sj

�) – (k-1) ∗ Dlb-base(CSi[1], Sj
� [1]) ≤ Dlb-warp(CSi[k:-], Sj

�)
That is, for all k (k = 2, 3, …, N),

D’ lb-warp(CSi[k:-], Sj
�) ≤ Dlb-warp(CSi[k:-], Sj

�) (2 ≤ k ≤ N) (d4)

By (d4) and Theorem 3, Theorem 4 is TRUE.

