
Fast Retrieval of Similar Subsequences

in Long Sequence Databases

Sanghyun Park Dongwon Lee Wesley W. Chu

Department of Computer Science

University of California, Los Angeles

Los Angeles, CA 90095, USA

Email: fshpark,dongwon,wwcg@cs.ucla.edu

Last Revised: August 9, 1999

Abstract

Many Indexing techniques have been proposed to support the fast retrieval of similar sequences using

the Euclidean distance metric. Since the Euclidean distance metric requires that two sequences be of

the same length, it cannot be applied to sequences of di�erent lengths. To remedy this problem, recent

techniques (e.g, [5, 15]) have used the modi�ed editing distance or the time warping distance, concen-

trating on the whole sequence matching. However, if their techniques are applied to the subsequences

matching with di�erent sequence lengths, the number of subsequences to be inspected during the search

is quadratic to the average length �L of data sequences, making the search algorithm su�er from severe

performance degradation in long sequence databases.

In this paper, we propose a novel sequence matching scheme, called the aligned subsequence

matching, where the number of subsequences to be compared with a query sequence is reduced to linear

to �L. In the aligned subsequence matching, sequences are segmented by piece-wise subsequences and

only those subsequences starting and ending at segment boundaries are inspected at search time. We

also present the indexing technique to support the fast retrieval of the similar aligned subsequences. Our

indexing method is summarized as follows: First we extract the feature vector from each subsequence

segment and group similar feature vectors together. Then, we convert each subsequence segment into the

symbol of the corresponding group. Finally, from the sequences of symbols, we construct the generalized

su�x tree (GST). At search time, the GST is traversed to �nd the subsequences whose lower-bound

distances from a query sequence do not exceed the distance tolerance. The subsequences that are within

the distance tolerance are obtained after discarding the false alarms. The experiments on the synthetic

data sequences demonstrate the e�ectiveness of our proposed approach; ours consistently outperformed

the sequential scanning and achieved up to 6.5-time speed-up (653%).

UCLA-CS-TR-990028

1

Contents

1 Introduction 3

2 Related Works 6

3 Background 7

3.1 Time Warping . 7

3.2 Su�x Tree . 8

4 Segmentation 8

5 Index Construction 10

5.1 Feature Extraction(~XS! ~XF) . 10

5.2 Categorization(~XF! ~XC) . 11

5.3 GST Construction . 12

6 Search Algorithm 12

6.1 Search Algorithm: SearchSubSequence() . 13

6.2 Converting Symbols to Ranges . 13

6.3 Similarity Measure of CategorizedFilter() . 15

6.4 Similarity Measure of HybridFilter() . 16

6.5 Lower Boundness . 17

6.6 Analysis of the Algorithms . 18

7 Experimental Results 19

8 Conclusion 20

2

1 Introduction

Similarity searches in sequence databases plays an important role in many application domains such as

information retrieval, data mining or clustering. Detecting stocks that have similar growth patterns or

�nding patients whose lung tumors have similar evolution characteristics are a few examples of such

similarity searches. Although sequential scanning can be used for answering those queries, its processing

time over large sequence databases is too costly.

Recently, several indexing techniques [1, 5, 8, 9, 15] have been proposed to speed up the processing

of similarity searches. Researches on similarity searches can be classi�ed by three criteria: 1) similarity

measure (or distance function), 2) sequence representation, and 3) indexing method.

� The similarity measure de�nes the degree of proximity of two sequences. Many of the previous

works [1, 8, 9] have used the Euclidean distance metric as the similarity measure. However, in

applications where the lengths or the evolution rates of sequences may be di�erent, other similarity

measures, such as the modi�ed editing distance [5] or the dynamic time warping distance [15], need

to be used.

� Since even the simplest similarity measures are often too expensive to be applied on raw sequences,

many previous works have taken the approach to extract the sets of features from sequences and

to measure the similarity of two sequences using the distance between two features sets. For ex-

ample, [8] used a few DFT coe�cients of subsequences of �xed size, and [13] divided sequences

into real-values functions and extract simple features from each segment. To guarantee no false dis-

missals, the similarity measure on feature sets should satisfy the so-called lower-bounding lemma [8].

� To speed up the similarity searches, the sets of features are managed by some indexing methods.

[1, 8] used R* tree and [5] used vantage-point tree as index structures. It is known that all spatial

access methods may generate false dismissals when the distance functions not satisfying triangular

inequality are used as similarity measures of sequences [15]. The time warping distance and the

modi�ed editing distance based on proximity do not satisfy the triangular inequality, making spatial

access methods unsuitable for indexing structures with these similarity measures.

On the other hand, as for the problems that these techniques aim to solve, most have so far focused on,

to a greater or lesser extent, 1) same-length sequences, 2) whole sequence matching, or 3) relatively short

sequences. Only recently a handful of new indexing techniques (e.g., [5, 8, 13, 15]) have been proposed

to cope with the opposite situations having 1) di�erent-length sequences, 2) subsequence matching, or 3)

long1 sequences. Although these techniques work well for each problem, when the problems are combined,

1Although it is di�cult to de�ne how much is long exactly, in this paper, we considered data sequences beyond 5,000

3

Notation Description

N number of elements in a sequence.

M number of sequences in a database.

� distance tolerance given by a user.

<> empty sequence.
~X sequence of real numbers.

j ~Xj number of elements in ~X .
~X[p] p-th element of ~X .
~X [p:r] subsequence of ~X containing elements from p to r.
~X[p:-] su�x of ~X starting from p. same as ~X [p:j ~Xj].
~XS segmented sequence of ~X.
~XF feature vector sequence of ~X.
~XC categorized sequence of ~X .
~XS [p] p-th subsequence segment of ~XS .
~XF [p] p-th feature vector of ~XF .
~XC [p] p-th symbol of ~XC .

Dsim(~X ,~Y) similarity measure between sequences ~X and ~Y .

Dsim�lb1(~X ,~Y) �rst lower-bound similarity measure between sequences ~X and ~Y .

Dsim�lb2(~X ,~Y) second lower-bound similarity measure between sequences ~X and ~Y .

Table 1: List of notations.

they became insu�cient. For instance, �nding similar subsequences with di�erent lengths is not a trivial

problem; the number of subsequences to be inspected during the search is quadratic to the average length

�L of data sequences, making the search algorithm su�er from severe performance degradation in long

sequence databases.

To remedy this problem, in this paper, we propose a novel sequence matching scheme, called the

aligned subsequence matching, where the number of subsequences to be compared with a query

sequence is reduced to linear to �L of data sequences. In the aligned subsequence matching, sequences

are segmented by piece-wise subsequences and only those subsequences ~X [p:r] satisfying the following

conditions are inspected during the search: 1) p is the starting position of a segment, 2) r is the ending

position of the same segment or its following segments, and 3) the number of segments in ~X[p:r] is

the same as that of segments in the query sequence. There are several ways to obtain the piece-wise

subsequence segments. Our proposal that does not require that the lengths of subsequence segments be

same is elaborated in Section 4.

Using the aligned subsequence matching, our similarity measure between two sequences ~X and ~Y is

de�ned as follows (Table 1 shows a list of notations used in this paper):

elements as long sequences. The data sequence of 5,000 elements can contain the daily ending prices of a stock for about

twenty years.

4

Dsim(~X; ~Y) =

j ~XS
jX

i=1

Dtw(~X
S [i]; ~Y S [i]) (1.1)

where ~XS [i] and ~Y S [i] are the i-th subsequence segments of ~X and ~Y , respectively, and Dtw(~X
S [i]; ~Y S [i])

is the time warping distance between two segments. This formula can be rephrased as \the distance

between two sequences is the sum of the time warping distances between each subsequence segment".

Note that the number of subsequence segments of ~X and ~Y must be same.

Example 1: Suppose we want to �nd all the aligned subsequences of a sequence ~X =<1,3,6,4,3,2,1,0,1,3>

that are similar to a query sequence ~Q = <3,1,0,1,3> within a distance tolerance � = 2.5. Further suppose

that ~X and ~Q are segmented to ~XS = <<1,3,6>,<4,3,2,1,0>,<1,3>> and ~QS = <<3,1,0>,<1,3>>,

respectively. Since ~XS and ~QS have 3 and 2 subsequence segments, respectively, the segmented query

sequence ~QS = <~QS [1], ~QS [2]> can possibly be compared with only two combinations of subsequence

segments of ~XS ; < ~XS [1], ~XS [2]> and < ~XS [2], ~XS [3]>. Then, the distances is computed as follows:

� Dsim(<1,3,6,4,3,2,1,0>,<3,1,0,1,3>) = Dtw(~X
S [1], ~QS [1]) + Dtw(~X

S [2], ~QS [2])

= Dtw(<1,3,6>,<3,1,0>) + Dtw(<4,3,2,1,0>,<1,3>) = 10 + 9 = 19.

� Dsim(<4,3,2,1,0,1,3>,<3,1,0,1,3>) = Dtw(~X
S [2], ~QS [1]) + Dtw(~X

S [3], ~QS [2])

= Dtw(<4,3,2,1,0>,<3,1,0>) + Dtw(<1,3>,<1,3>) = 2 + 0 = 2.

Since only Dsim(<4,3,2,1,0,1,3>,<3,1,0,1,3>) has a distance within the given �, the aligned subsequence

that matches the query sequence ~Q is the <4,3,2,1,0,1,3>. �

Although the aligned subsequence matching is signi�cantly faster than the conventional subsequence

matching (i.e., O(M �Lj ~Qj) vs. O(M �L2j ~Qj)), we can still improve the search time further by adopting a

sophisticated indexing method. That is, the search time can be decreased to O(
M �Lj ~Qj
F

), where F is some

constant factor gained by the indexing. To achieve this gain, we used an indexing method constructed

as follows. First, we extract the feature vector from each subsequence segment and group similar feature

vectors together. Then, we convert each subsequence segment to a symbol of the corresponding group.

Finally, from the sequences of symbols, we construct a generalized su�x tree (GST). At search time, the

GST is traversed to �nd the subsequences whose lower-bound distances from a query sequence do not

exceed the distance tolerance. The subsequences that are within the distance tolerance are obtained after

discarding the false alarms.

The remaining paper is organized as follows. In Section 2, related works are surveyed. In Section 3,

some preliminary information is introduced. Then, our proposed techniques are discussed in following

sections; First, Section 4 describes our method to segment sequences to piece-wise subsequences. The

5

indexing technique and its search algorithms are presented in Section 5 and in Section 6, respectively.

Finally, our proposal is veri�ed by the experimental results in Section 7 and some concluding remarks

are followed in Section 8.

2 Related Works

Several approaches for fast retrieval of similar sequences have recently been proposed. In [1], sequences

are converted into the frequency domain by the Discrete Fourier Transform and are subsequently mapped

into multi-dimensional points that are managed by an R�-tree. This technique can be extended to locate

similar subsequences [8]. Assuming the minimum query length W is known in advance, features are

extracted from every subsequence of size W and are mapped into multi-dimensional points. The mapped

points are represented by their minimum bounding rectangles. Since both approaches of [1] and [8] use

the Euclidean distance metric as similarity measures, sequences of di�erent lengths or di�erent evolution

rates cannot be matched.

Sequence matching that allows transformations is proposed in [9, 11]. In [9], the sequences are grouped

into equivalent classes according to shape-based transformations, and are represented by their normal

forms from which the indexes are built. However, the normal forms do not handle the compressions or

the stretches of element values along the time axis. The authors of [11] propose a class of transformations

that can be used in a query language to express similarity with an R-tree index. Since an R-tree index

is based on the triangular inequality, [11] may generate false dismissals with the time warping similarity

measure.

The access methods of [5, 15] permit the matching of sequences of di�erent lengths. [5] presents a

modi�ed version of edit distance, considering two sequences being matched if a majority of elements

match. In [15], a time warping distance is used as a similarity measure with a two-step �ltering process:

a FastMap index �lter followed by a lower-bound distance �lter. Both approaches of [5, 15] focus on the

whole sequence matching and use index structures based on the triangular inequality.

Similarity matching based on shapes of sequences is proposed in [2, 13]. [2] demonstrates a shape

de�nition language (SDL) and provides an index structure for speeding up the execution of SDL queries.

In [13], the authors introduce the notion of generalized approximate queries that specify the general shapes

of data histories. Whereas both approaches of [2, 13] may handle the sequences of di�erent lengths or

di�erent evolution rates, they cannot be used for applications that care about speci�c element values.

There are also several approaches for matching of biological sequences. [4] proposes to use a disk-

based generalized su�x tree for solving the sequence alignment problem, and [14] addresses the problem

of discovering patterns in protein databases with the similarity measure of a string edit distance. While

6

we focus on the sequences of real numbers, the approaches of [4, 14] center on the sequences of characters.

Furthermore, the algorithm of [14] uses a main-memory based generalized su�x tree, making it infeasible

for a large sequence set.

3 Background

We assume that values of the sequences are real numbers. We denote a sequence <x1,....,xN> as ~X. In

what following subsections, we shall review some preliminary background to facilitate the discussion.

3.1 Time Warping

Time warping allows the sequence to be stretched or compressed along the time axis. To �nd the

minimum di�erence between two sequences, time warping maps each element of a sequence to one or

more neighboring elements of another sequence. For any non-null sequences ~X and ~Y , the time warping

distance is de�ned as follows[10]:

De�nition 1: The time warping distance between sequences ~X and ~Y is:

Dtw(<>;<>) = 0

Dtw(~X;<>) = Dtw(<>; ~Y) =1

Dtw(~X; ~Y) = Dbase(~X [1]; ~Y [1]) + min

8>><
>>:

Dtw(~X; ~Y [2 : �])

Dtw(~X [2 : �]; ~Y [2 : �])

Dtw(~X [2 : �]; ~Y [2 : �]))

where Dbase(~X [i]; ~Y [i]) = j ~X [i]� ~Y [i]j2. �

Dtw(~X ,~Y) can be e�ciently calculated using a dynamic programming technique [3] based on the recur-

rence relation Rtw(i; j), where 1 � i � j ~X j and 1 � j � j~Y j.

De�nition 2: The recurrence relation Rtw(i; j) is:

Rtw(0; 0) = 0

Rtw(i; 0) = Rtw(0; j) =1

Rtw(i; j) = Dbase(~X[i]; ~Y [i]) + min

8>><
>>:

Rtw(i; j � 1)

Rtw(i� 1; j)

Rtw(i� 1; j � 1)

�

2Any distance metric in Lp is �ne.

7

Rtw(i; j) builds up the cumulative distance table as the computation proceeds. The �nal cumulative

distance, Rtw(j ~X j; j~Y j) is the time warping distance between sequences ~X and ~Y . The matching of

elements can be traced backward in the table by choosing the previous cells with the lowest cumulative

distance. For details, refer to [3].

3.2 Su�x Tree

A trie is an indexing structure used for indexing sets of keywords of varying sizes. A su�x trie [12] is a trie

whose set of keywords comprises the su�xes of a single sequence. Nodes with a single outgoing edge can

be collapsed, yielding the structure known as the su�x tree [12]. A generalized su�x tree (GST) [4, 14]

is an extension of the su�x tree allowing for multiple sequences to be stored in the same tree. Each su�x

of a sequence is represented by a leaf node. Precisely, ~X[p:-] is expressed by a leaf node labeled with

(id(~X),p), where id(~X) is an identi�er of ~X and p is the o�set from which the su�x starts. The edges

are labeled with subsequences such that the concatenation of the edge labels on the path from the root

to the leaf (id(~X),p) becomes ~X[p:-]. The concatenation of the edge labels on the path from the root to

the internal node, Ni, represents the longest common pre�x of the su�xes represented by the leaf nodes

under Ni. We use the notation label(Ni; Nj) for the concatenated labels on the path from Ni to Nj . In

what follows, we use the trie as a basis of our discussion although we used the tree in real implementation

for its e�ciency. This is because using the trie is simpler to explain than using the tree.

Example 2: Figure 1 illustrates the GST constructed from two sequences, ~X = <4,5,6,7,6,6> and ~Y

= <4,6,7,8>, where $ where $ denotes an end marker of a su�x. �

4 Segmentation

Ideally, the sequence representation should be succinct while retaining interesting features that the original

sequence has. Similar sequence representations should correspond to similar original sequences and vice

versa. To break up sequences, we use a divide & conquer algorithm shown in Algorithm 1 which is

modi�ed from the one in [13]. First, let us introduce the concept of the peak point.

De�nition 3: Given three consecutive points h x, y, z i from a sequence ~X , if 1) x � y and y � z or 2)

x � y and y � z, then the point y is called the peak point. In an extreme case such as the formula y=3,

every point becomes the peak point. In typical case, however, when monotonically increasing sequence

is changed to monotonically decreasing or vice versa, the turning point becomes the peak point. �

Using the peak point concept, our algorithm essentially does following: given a sequence, algorithm �rst

scans the sequence and records all the peak points. Then, algorithm takes the line interpolating two end

8

4

 5
 6

 7
 6

 6
 $

6
7

8
$

 5
 6
 7

 6
 6

 $

6

7$

6
 6
$

8
 $

7

6
 6
$

8
 $

8 $

(id(),1) (id(),2) (id(),6) (id(),5) (id(),4) (id(),3)

(id(),3)

(id(),4)

N1

N2

N3 N4 N5 N7

N6

N8 N9

N10 N11

N12

N13 N14

N15

 6
$

X
�

(id(),1)X
�

Y
�

X
�

X
�

X
�

X
�

Y
�

Y
�

(id(),2)Y
�

X
�

Figure 1: GST example.

points of the sequence, e�ectively breaks sequences at extremum points with maximum deviation, and

recursively breaks those subsequences further until some threshold is exceeded. In addition, we add two

improvements as follows:

� Algorithm in [13] scans whole N elements in a sequence ~X to �nd the extremum point in each

recursion. Since this �nding lasts for the number of peak points, say P , its worst case running time

is O(N �P). We observed that most of the time the extremum point is the peak point. Hence, our

algorithm examines only peak points to �nd the extremum point in each recursion (line 2 of the

Algorithm 1). The worst case running time of ours, then, is O(N +P 2). When N is very large and

P � N (which is very likely the case in practice), ours is more e�cient than the algorithm in [13].

� Undesirable subsequences can be �ltered out as early as possible by the constraint check at line 6 of

the Algorithm 1. This is desirable property when certain semantic constraints are identi�ed early.

For instance, in stock trading sequence data, if only subsequences whose increase or decrease rates

are more than 5% are interested, then our algorithm can �lter out those whose increase or decrease

rates are less than 5% at early stage.

Note that the elements of ~XS are subsequences instead of real numbers. Therefore, the number of

elements in ~XS is much smaller than that of ~X. The compaction ratio (C) can be expressed as C =
j ~Xj

j ~XS
j

.

9

Input : sequence ~X = <x1,...,xN>, peak points P = p1,...,pK where pi 2 ~X and 1 � K � N,

threshold t, constraint C

Output: segmented sequence ~XS

1 �t an interpolation line L to ~X ;

2 �nd max derivation point pi from P and its value d;

3 remove pi from P ;

4 if d < t then

return ~X;

else

5 split ~X into two subsequences � and � at Pi;

6 if � or � violates C then

7 throw away � and �;

8 goto line 2;

else

9 call Segmentation(�; P; t; C);

10 call Segmentation(�; P; t; C);

Algorithm 1: Segmentation

C is also considered as the average number of elements in a subsequence segment.

Example 3: ~X = <4,5,8,8,8,8,9,11,8,4,3,7,10> is segmented to ~XS where ~XS [1] = <4,5,8,8,8,8,9,11>,

~XS [2] = <8,4,3>, and ~XS [3] = <7,10>. j ~X j = 13 and j ~XS j = 3. Therefore, the compaction ratio C =

13/3 = 4.3. �

5 Index Construction

To support the fast aligned subsequence matching, we need an e�cient indexing scheme. First, we extract

the feature vector from each subsequence segment created from the segmentation step and group similar

feature vectors together using the clustering technique. Then, we convert each subsequence segment to a

symbol of the corresponding group. Finally, from the sequences of symbols, we construct the GST.

5.1 Feature Extraction(~XS! ~X
F)

In this step, representative features are extracted from each subsequence segment. We use a 5 tuple

feature vector (L; V1; VL; �+; ��) for each subsequence segment �, where L = j�j, V1 = �[1], VL = �[L],

and �+ and �� are the positive and negative maximum deviation from the interpolation line connecting

the two points (1, V1) and (L, VL), respectively. Each feature shall be denoted using the dot notation

10

Feature Vector L V1 VL �+ �� interpolation line

�F 8 4 11 maxf0,0,2,1,0,0,0,0g = 2 maxf0,0,0,0,0,1,1,0g = 1 y = x + 3

�F 3 8 3 maxf0,0,0g = 0 maxf0,1.5,0g = 1.5 y = {2.5x + 10.5

F 2 7 10 maxf0,0g = 0 maxf0,0g = 0 y = 3x + 4

Table 2: Subsequence feature vectors example.

like �:V1 or �:�+. A deviation value �+ can be computed by the Algorithm 2. (�� is a symmetric case of

the �+ and omitted).

Input : subsequence �[1 : L], Interpolate(i; L; V1; VL) = V1 + (VL � V1) � (i� 1)=(L � 1)

Output: �+

�+ v 0;

for i 1 to L do

v �[i] - Interpolate(i; L; V1; VL); #compute deviation value.

if v < 0 then v 0; #make v non-negative.

if v > �+ then �+ v; #keep max value.

return �+;

Algorithm 2: PositiveMaxDeviation.

Example 4: Consider three subsequences � = <4,5,8,8,8,8,9,11>, � = <8,4,3>,
 = <7,10>. Their

corresponding feature vectors �F , �F , and
F are shown in Table 2. �

5.2 Categorization(~XF! ~X
C)

In this step, feature vectors extracted in feature extraction step are mapped into corresponding symbols.

Using the clustering technique (e.g, equal-length-interval, maximum-entropy, or MTAH [6])3, we �rst

group similar feature vectors together. Then, a unique symbol is assigned to each group and lower and

upper bounds for feature vectors included in the group are kept in the mapping table. One such example

is depicted in Table 3.

We use lb and ub to denote lower and upper bound of range, respectively. Using the dot notation,

for instance, symbol A's feature �+ in Table 3 has range like A:�+:lb = 1.5 and A:�+:ub = 2.5. Then,

according to the mapping table, sequences of feature vectors are converted to sequences of symbols. That

is, given a 5-tuple feature vector �F , if all features satisfy the corresponding ranges for the symbol A in

the mapping table, then �F is replaced to A. ~XC is used to refer to the categorized sequence of ~X . Note

that elements of ~XC are symbols such as A and the length of ~XC is the same as that of ~XS . Consider

the following illustrating example.

3For experimentation, the maximum-entropy is used.

11

Symbol L V1 VL �+ ��

A 6 � L � 8 3 � V1 � 5 10 � VL � 13 1.5 � �+ � 2.5 0 � �� � 2

B 2 � L � 3 7 � V1 � 9 2 � VL � 4 0 � �+ � 1.5 0.5 � �� � 3

...

Table 3: Mapping table example from 5-dimensional features to symbols.

Example 5: Consider ~X= <4,5,8,8,8,8,9,11,8,4,3> is segmented into ~XS= <<4,5,8,8,8,8,9,11>,

<8,4,3>>. After feature vectors are extracted from each subsequence, ~XF [1] and ~XF [2] are the same as

�F and �F in Table 2, respectively. Further, by looking up Table 3, ~XF [1] and ~XF [2] can be mapped

into symbols A and B, respectively. Therefore, ~XC= <A,B>. �

5.3 GST Construction

After obtaining sequences of symbols, we use the GST as an index structure for fast subsequence matching.

It has the following bene�ts:

� It is a good structure especially for subsequence matching since all possible su�xes of the given

sequence is maintained in the GST.

� It is not based on triangular inequality so that it guarantees no false dismissals using the lower-

bounding distance functions in index space.

There are several algorithms proposed to build the GST from sequences of symbols. We use an

incremental disk-based GST construction method proposed in [4]. Two GSTs, representing two disjoint

sets of sequences, are merged to produce a single GST by pre-order traversal of both GSTs and combining

the paths corresponding to common subsequences. A GST for a large set of sequences can be constructed

by performing a series of binary merges of GSTs of increasing size. The merge operation of two GSTs

has the advantage of supporting disk-based representations of GSTs in limited main memory. The

construction of GST has the time complexity O(Z) where Z is the total length of the sequences. In our

case, Z is expressed as Z = j ~XC
1 j + ... + j ~XC

M j.

6 Search Algorithm

Given the query sequence ~Q and the distance threshold �, we want to �nd subsequences whose distances

to ~Q are within �. In this section, we propose a new search algorithm, SearchSubSequence(), that consists

of three steps { two �lterings and a post-processing - as shown in 2.

12

query seq.

segmented
query seq.

categorized
 query seq.

data seq.
 in GST

CategorizedFilter()

HybridFilter() matching
 seq.

PostProcess()

data seq.
 in DB

Figure 2: Overview of the SearchSubSequence() Algorithm.

1. 1st �ltering: During traversal of the GST, SearchSubSequence() computes the lower-bound dis-

tances between the categorized query sequence ~QC and the categorized subsequences ~XC and �nds

all candidates whose distances are within �. Since this is based on two categorized sequences, we

call this step CategorizedFilter().

2. 2nd �ltering: SearchSubSequence() computes the lower-bound distances between the segmented

query sequence ~QS and the categorized subsequences ~XC belonging to the candidate set returned

from CategorizedFilter() and �nds all candidates whose distances are within �. Since this is based

on both segmented and categorized sequences, we call this step HybridFilter().

3. post-processing: the actual subsequences of the remaining candidates are retrieved and their

distances from ~Q are computed and those whose distances are within � are returned as the �nal

answers. This step is called PostPorcess().

6.1 Search Algorithm: SearchSubSequence()

The SearchSubSequence() and CategorizedFilter() are shown in Algorithm 3 and 4. AlgorithmHybridFilter()

is identical to CategorizedFilter(), except that

� It has ~QS as an input instead of ~QC .

� It uses di�erent distance function, Dtw�1b2(label(N;CNi), ~Q
S [1]), at line 1 and

� Before traversing the GST, su�xes that are not contained in the candidate set identi�ed by the

CategorizedFilter() are pruned.

We assume that a function GetChildren(N) returns a list of children of the node N and GetRoot(N)

returns the root node of N . Algorithm HybridFilter() and PostProcess() are omitted.

6.2 Converting Symbols to Ranges

Given a subsequence segment (and thus its feature vector), the corresponding symbol can be easily found

by looking up the mapping table that stores the lower and upper bound values. However, going the other

13

Input : Root, ~Q, �

Output: answerSet

~QS Segmentation(~Q);
~QC Categorization(~QS);

candidateSet answerSet ;;

1 candidateSet CategorizedFilter(Root, ~QC , �);

2 for i 1 to jcandidateSetj do

prune su�xes from GST not contained in candidateSet;

3 candidateSet HybridFilter(Root, ~QS , �);

4 answerSet PostProcess(candidateSet, ~QS , �);

return answerSet;

Algorithm 3: SearchSubSequence

Input : Node N , ~QC , �

Output: candidateSet

candidateSet ;;

CN GetChildren(N);

for i 1 to jCN j do

1 dist Dtw�lb1(label(N ,CNi), ~Q
C [1]);

if dist � � then

if j ~QC j = 1 then insert label(GetRoot(CNi), CNi) into candidateSet;

else CategorizedFilter(CNi, ~Q
C [2 : �], ��dist);

return candidateSet;

Algorithm 4: CategorizedFilter

14

way around, given a symbol, it is di�cult to �nd out all subsequence segments included in the symbol

without scanning all sequences contained in a database or maintaining links from symbols to subsequence

segments. However, using the lower and upper bound values of the symbol, we can infer the possible

value ranges for each element position of subsequence segments included in the symbol. That is, given

a symbol A, possible value range for A is range(A) = < (lb1; ub1); :::; (lbA:L:ub; ubA:L:ub) >. lbi and ubi

(1 � i � A:L:ub) can be computed by the following formula (pre�x A is omitted for briefness):

lbi =

8>><
>>:

V1:lb if i = 1

Interpolate(i; L:ub; V1:lb; VL:lb)� ��:ub if 1 < i < L.ub

VL:lb if i = L.ub

ubh =

8>>>>>>>><
>>>>>>>>:

V1:ub if h = 1

Interpolate(h;L:lb; V1:lb; VL:lb) + �+:ub if 1 < h < L.lb

maxfVL:ub; Interpolate(h;L:ub; V1:ub; VL:ub) + �+:ubg if h = L.lb

Interpolate(h;L:ub; V1:ub; VL:ub) + �+:ub if L.lb < h < L.ub

VL:ub if i = L.ub

Example 6: Let us compute range(B) from the symbol B in Table 3. The maximum length of

the range(B) is 3 since L.ub = 3. Therefore, range(B) = < (lb1; ub1); (lb2; ub2); (lb3; ub3) >. By using

the above formula,(lb1; ub1) = (7,9) and (lb3; ub3) = (2,4) can be easily computed. The computation of

(lb2; ub2) is more complicated. lb2 = Interpolate(h;L:ub; V1:lb; VL:lb) { ��.ub = Interpolate(2,3,7,2) { 3 =

4.5 { 3 = 1.5. ub2 = maxfVL:ub; Interpolate(h;L:ub; V1:ub; VL:ub) + �+.ubg = Interpolate(2,3,9,4) + 1.5

= 6.5 + 1.5 = 8. Thus, range(B) = <(7,9),(1.5,8),(2,4)>. This can be interpreted as \symbol B can

have starting value between 7 and 9 and ending value between 2 and 4. Also it may have intermediate

value between 1.5 and 8." �

In the rest of the paper, we assume that there is a function Symbol2Range() which takes a symbol as

input and returns the lower and upper bound of each element of the subsequence segments included in

the symbol.

6.3 Similarity Measure of CategorizedFilter()

Since the similarity measure in Equation 1.1 is based on the distance between two segmented sequences,

it is not directly applicable to the CategorizedFilter() whose distance function is based on two categorized

sequences. To remedy this problem, we need to modify the similarity measure accordingly. Let us assume

15

that label(N;CNi) is the symbol A and ~QC [1] is the symbol B. Further, assume that Symbol2Range(A)

= RA and Symbol2Range(B) = RB. Then, the lower bound distance between two symbols is de�ned as

follows:

Dtw�lb1(A;B) = min(Dtw�lb1�sub(RA[1 : i]; RB[1 : j])) (6.2)

where A:L:lb � i � A:L:ub and B:L:lb � j � B:L:ub. Since RA[1 : i] and RB[1 : j] are also the sequences

of ranges, in what follows, we use RA and RB notation instead. Then, Dtw�lb1�sub(RA;RB) is de�ned

further as follows:

Dtw�lb1�sub(<>;<>) = 0

Dtw�lb1�sub(RA;<>) = Dtw�lb1�sub(<>;RB) = 1

Dtw�lb1�sub(RA;RB) = Dbase�lb1(RA[1]; RB[1]) + min

8>><
>>:

Dtw�lb1�sub(RA;RB[2 : �])

Dtw�lb1�sub(RA[2 : �]; RB)

Dtw�lb1�sub(RA[2 : �]; RB[2 : �])

Dbase�lb1(RA[x]; RB[y]) =

8>><
>>:

0 if RA[x] and RA[y] overlap

RB[y]:lb�RA[x]:ub if RA[x].ub < RB[y].lb

RA[x]:lb�RB[y]:ub if RA[x].lb > RB[y].ub

Dtw�lb1�sub(RA[1 : i]; RB[1 : j]) builds the distance table of size i � j. Therefore, Dtw�lb1(A;B) requires

the constructions of (A:L:ub�A:L:lb+ 1) � (B:L:ub�B:L:lb+ 1) distance tables whose sizes vary from

A:L:lb � B:L:lb to A:L:ub � B:L:ub. Having de�ned the lower bound distance, now the actual similarity

measure of the CategorizedFilter() is de�ned as follows:

Dsim�lb1(~X; ~Q) =

j ~XC
jX

i=1

Dtw�lb1(~X
C [i]; ~QC [i]) (6.3)

6.4 Similarity Measure of HybridFilter()

Again, since the similarity measure in Equation 1.1 is based on the distance between two segmented

sequences, it is not directly applicable to the HybridFilter() whose distance function is based on both

segmented and categorized sequences. Therefore, similar to CategorizedFilter(), we need to modify the

similarity measure accordingly. Let us assume that label(N;CNi) is the symbol A, Symbol2Range(A) =

RA and ~QS [1] is the segment �. Then, the lower bound distance between the symbol A and the segment

� is de�ned as follows:

Dtw�lb2(A; �) = min(Dtw�lb1�sub(RA[1 : i]; �)) (6.4)

16

where A:L:lb � i � A:L:ub. Further, Dtw�lb2�sub() can be de�ned as follows:

Dtw�lb2�sub(<>;<>) = 0

Dtw�lb2�sub(RA;<>) = Dtw�lb1�sub(<>; �) = 1

Dtw�lb2�sub(RA; �) = Dbase�lb2(RA[1]; �[1]) + min

8>><
>>:

Dtw�lb2�sub(RA; �[2 : �])

Dtw�lb2�sub(RA[2 : �]; �)

Dtw�lb2�sub(RA[2 : �]; �[2 : �])

Dbase�lb2(RA[x]; �[y]) =

8>><
>>:

0 if RA[x].lb � �[y] � RA[x].ub

�[y]�RA[x]:ub if RA[x].ub < �[y]

RA[x]:lb� �[y] if RA[x].lb > �[y]

Dtw�lb2�sub(RA[1 : i]; �) builds the distance table of size i � j�j. Therefore, Dtw�lb2(A;B) requires the

constructions of (A:L:ub � A:L:lb + 1) distance tables whose sizes vary from A:L:lb to A:L:ub. Having

de�ned the lower bound distance, now the actual similarity measure of the HybridFilter() is de�ned as

follows:

Dsim�lb2(~X; ~Q) =

j ~XC
jX

i=1

Dtw�lb2(~X
C [i]; ~QS [i]) (6.5)

6.5 Lower Boundness

The similarity measures of CategorizedFilter() and HybridFilter() obey the lower-bounding lemma faithfully,

leading our index structure to guarantee no false dismissals. Let us �rst describe the lower-boundness of

Dtw�lb1() and Dtw�lb2() on which both Dsim�lb1() and Dsim�lb2() are based.

Theorem 1: For any two subsequence segments � and �, and their corresponding categorized symbols

A and B, the following inequality holds:

Dtw�lb1(A;B) � Dtw�lb2(A; �) � Dtw(�; �)

�

Proof: By the mappings from � to A, and � to B, we know that A:L:lb � j�j � A:L:ub and B:L:lb �

j�j � B:L:ub. Assume that Symbol2Range(A) = RA and Symbol2Range(B) = RB. Then, let us take the

�rst j�j ranges from RA and �rst j�j ranges from RB. By the de�nition of the Symbol2Range(), we get

RA[i]:lb � �[i] � RA[i]:ub (1 � i � j�j) (6.6)

RB[j]:lb � �[j] � RB[j]:ub (1 � j � j�j) (6.7)

17

By Equations 6.6 and 6.7 and de�nitions of Dbase�lb1(), Dbase�lb2(), and Dbase(), we get

Dtw�lb1�sub(RA[1 : 1]; RB[1 : 1]) � Dtw�lb2�sub(RA[1 : 1]; �[1]) � Dtw(�[1]; �[1]) (6.8)

Using the induction process from 6.8, we get

Dtw�lb1�sub(RA[1 : i]; RB[1 : j�j]) � Dtw�lb2�sub(RA[1 : i]; �) (1 � i � A:L:ub) (6.9)

Dtw�lb2�sub(RA[1 : j�j]; �) � Dtw(�; �) (6.10)

By Equation 6.9 and de�nitions of Dtw�lb1() and Dtw�lb2(), we get

Dtw�lb1(A;B) � Dtw�lb2(A; �) (6.11)

In addition, by Equation 6.10 and de�nitions of Dtw�lb2() and Dtw(), we get

Dtw�lb2(A; �) � Dtw(�; �) (6.12)

Finally, by Equations 6.11, and 6.12, Theorem 1 is TRUE. �

Now, we show the lower-boundness of CategorizedFilter() and HybridFilter(). Note that CategorizedFilter()

uses the similarity measure Dsim�lb1() and HybridFilter() uses the similarity measure Dsim�lb2().

Theorem 2: For any two sequences ~X and ~Y , the following inequality holds:

Dsim�lb1(~X; ~Y) � Dsim�lb2(~X; ~Y) � Dsim(~X; ~Y)

�

Proof: By Theorem 1, we know that

Dtw�lb1(~X
C [i]; ~Y C [i]) � Dtw�lb2(~X

C [i]; ~Y S [i]) � Dtw(~X
S [i]; ~Y S[i])for8i; 1 � i � j ~XS

j (6.13)

Remember that j ~XS j = j ~XC j = j~Y C j = j~Y Sj. By Equation 6.13 and the de�nitions of Dsim�lb1(~X; ~Y),

Dsim�lb2(~X; ~Y), and Dsim(~X; ~Y), Theorem 2 is TRUE. �

6.6 Analysis of the Algorithms

We use the notations in Table 4 for the analysis of the algorithms.

18

Notation Description

�L average length of data sequences.

C average number of elements in subsequence segments (i.e., compaction ratio)
j ~Qj

C
average number of subsequence segments in the query sequence.

�L
C

average number of subsequence segments in a data sequence.

Table 4: List of notations.

Complexity of Sequential Scanning: The complexity for computing the time warping distance be-

tween two subsequence segments is O(C2). The complexity for measuring the modi�ed time-warping

distance between the segmented query sequence and the aligned subsequence is O(
C2

j ~Qj

C
) = O(Cj ~Qj).

The average number of the aligned subsequences with
j ~Qj

C
subsequence segments in a data sequence is

(
�L
C
�

j ~Qj

C
+ 1). Then, the complexity for processing M sequences is O(M j ~Qj(�L � j ~Qj+ C)). If �L � j ~Qj,

the complexity becomes O(M j ~Qj�L).

Complexity of CategorizedFilter(): The complexity for computing Dtw�lb2() is the same as Dtw(), but

is reduced to O(1) if we pre-compute all the distances between symbols and keep them in table. The

complexity of CategorizedFilter is O(
M j ~Qj(�L�j~qj+C)

C2R1

+n1Cj ~Qj) where R1 (� 1) is the reduction factor saved

by sharing edges in the GST and n1 is the number of aligned subsequences requiring the post-processing.

If �L� j ~Qj, the complexity becomes O(
M �Lj ~Qj

C2R1

+ n1Cj ~Qj).

Complexity of HybridFilter(): The complexity for computing Dtw�lb2() is the same as Dtw(). The

complexity of HybridFilter() is O(
M j ~Qj(�L�j ~Qj+C)

R2
+n2Cj ~Qj) where R2 (>> 1) is the reduction factor saved

by sharing edges in the GST and n2 is the number of aligned subsequences requiring the post-processing.

Similar to the CategorizedFilter(), if �L� j ~Qj, the complexity becomes O(
M �Lj ~Qj

R2
+ n2Cj ~Qj).

7 Experimental Results

We used the set of data sequences from UC Irvine KDD Archive (http://kdd.ics.uci.edu) to test the

e�ectiveness of our approach. The dataset, called \Pseudo Periodic Synthetic Time Series", is specially

designed for testing indexing schemes in time series databases. The actual sequence is generated by the

following function:

~y =

7X
i=3

1

2i
sin(2�(22+i + rand(2i))~t)

where 0� ~t �1. From the ten 100,000-element data sequences, we created 90 sequences (each has 10,000-

elements) out of the original 9 sequences and randomly extracted query shapes from the 10-th sequence.

19

Figure 3 shows the results of the experimentation. Our scheme consistently outperformed the sequential

scanning and achieved up to 6.5-time speed-up (653%).

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

T
ot

al
 E

la
ps

ed
 T

im
e

(s
ec

)

distance tolerance

SequentialScan
SearchSubSequence

Figure 3: Performance comparison between SequentialScan and SearchSubSequence algorithms

8 Conclusion

In this paper, we proposed a novel sequence matching scheme, called the aligned subsequence matching,

that has a time complexity O(M �Lj ~Qj) for the retrieval of similar subsequences of di�erent lengths. Our

scheme is useful in applications handling long sequence databases. To speed up the aligned subsequence

matching, we also presented an e�cient indexing method that is based on the generalized su�x tree

(GST) and two lower-bounding distance functions. Unlike R* tree and vantage-point-tree, the GST does

not assume the triangular inequality, leading our indexing structure to guarantee no false dismissals. The

experiments on a synthetic dataset demonstrated the e�ectiveness of our proposed approach.

References

[1] R. Agrawal, C. Faloutsos, A. Swami, \E�cient Similarity Search in Sequence Databases", Proc.

FODO , Evanston, IL, 1993.

[2] R. Agrawal, G. Psaila, E. L. Wimmers, M. Zat, \Querying Shapes of Histories", Proc. VLDB , Zurich,

Switzerland, 1995.

[3] D. J. Berndt, J. Cli�ord, \Finding Patterns in Time Series", Advances in Knowledge Discovery and

Data Mining, AAAI/MIT , 1996.

20

[4] P. Bieganski, J. Riedl, J. V. Carlis, \Generalized Su�x Trees for Biological Sequence Data: Appli-

cations and Implementation", Proc. Hawaii Int'l Conf. on System Sciences, 1994.

[5] T. Bozkaya, N. Yazdani, M. �Ozsoyo�glu, \Matching and Indexing Sequences of Di�erent Lengths",

Proc. ACM CIKM , Las Vegas, NV, 1997.

[6] W. W. Chu, H. Yang, et el., \CoBase: A Scalable and Extensible Cooperative Information System",

JIIS , 1996.

[7] C. Faloutsos, K. Lin, \FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of

Traditional and Multimedia Datasets", Proc. ACM SIGMOD , San Jose, CA, 1995.

[8] C. Faloutsos, M. Ranganathan, Y. Manolopoulos. \Fast Subsequence Matching in Time-Series

Databases", Proc. ACM SIGMOD , Minneapolis, MN, 1994.

[9] D. Q. Goldin, P. C. Kanellakis, \On Similarity Queries for Time-Series Data: Constraint Speci�cation

and Implementation", Proc. Constraint Programming , Marseilles, 1995.

[10] L. Rabiner, B.-H. Juang, \Fundamentals of Speech Recognition". Prentice Hall , 1993.

[11] D. Ra�ei, A. Mendelzon, \Similarity-based Queries for Time Series Data", Proc. ACM SIGMOD ,

Tucson, AZ, 1997.

[12] G. A. Stephen, \String Searching Algorithms", World Scienti�c Publishing , 1994.

[13] H. Shatkay, S. B. Zdonik, \Approximate Queries and Representations for Large Data Sequences",

Proc. IEEE ICDE , 1994.

[14] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, K. Zhang, \Combinatorial Pattern

Discovery for Scienti�c Data: Some Preliminary Results", Proc. ACM SIGMOD , Minneapolis, MN,

1994

[15] B.-K. Yi, H. V. Jagadish, C. Faloutsos, \E�cient Retrieval of Similar Time Sequences Under Time

Warping", Proc. IEEE ICDE , 1998.

21

